In
biology
Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
, co-adaptation is the process by which two or more species, genes or
phenotypic traits undergo
adaptation
In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the p ...
as a pair or group. This occurs when two or more interacting characteristics undergo
natural selection
Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
together in response to the same
selective pressure or when selective pressures alter one characteristic and consecutively alter the interactive characteristic. These interacting characteristics are only beneficial when together, sometimes leading to increased interdependence. Co-adaptation and
coevolution, although similar in process, are not the same; co-adaptation refers to the interactions between two units, whereas co-evolution refers to their evolutionary history. Co-adaptation and its examples are often seen as evidence for co-evolution.
Genes and Protein Complexes
At genetic level, co-adaptation is the accumulation of interacting genes in the gene pool of a population by selection. Selection pressures on one of the genes will affect its interacting proteins, after which compensatory changes occur.
Proteins often act in complex interactions with other proteins and functionally related proteins often show a similar evolutionary path.
A possible explanation is co-adaptation.
An example of this is the interaction between proteins encoded by
mitochondrial DNA
Mitochondrial DNA (mtDNA and mDNA) is the DNA located in the mitochondrion, mitochondria organelles in a eukaryotic cell that converts chemical energy from food into adenosine triphosphate (ATP). Mitochondrial DNA is a small portion of the D ...
(mtDNA) and
nuclear DNA
Nuclear DNA (nDNA), or nuclear deoxyribonucleic acid, is the DNA contained within each cell nucleus of a eukaryotic organism. It encodes for the majority of the genome in eukaryotes, with mitochondrial DNA and plastid DNA coding for the rest. ...
(nDNA). MtDNA has a higher rate of evolution/mutation than nDNA, especially in specific coding regions.
However, in order to maintain physiological functionality, selection for functionally interacting proteins, and therefore co-adapted nDNA will be favourable.
Co-adaptation between mtDNA and nDNA sequences has been studied in the copepod ''
Tigriopus californicus''.
The mtDNA of
COII coding sequences among conspecific populations of this species diverges extensively.
When mtDNA of one population was placed in a nuclear background of another population,
cytochrome c oxidase
The enzyme cytochrome c oxidase or Complex IV (was , now reclassified as a translocasEC 7.1.1.9 is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes.
It is the last enzyme in the Cellular respir ...
activity is significantly decreased, suggesting co-adaptation. Results show an unlikely relationship between the variation in mtDNA and environmental factors. A more likely explanation is the neutral evolution of mtDNA with compensatory changes by the nDNA driven by neutral evolution of mtDNA (random mutations over time in isolated populations).
Bacteria and bacteriophage
Gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
blocks in
bacteria
Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
l
genome
A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
s are sequences of genes, co-located on the
chromosome
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
, that are evolutionarily conserved across numerous taxa.
Some conserved blocks are
operons, where the genes are cotranscribed to polycistronic
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
, and such operons are often associated with a single function such as a
metabolic pathway
In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell (biology), cell. The reactants, products, and Metabolic intermediate, intermediates of an enzymatic reaction are known as metabolites, which are ...
or a
protein complex
A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multidomain enzymes, in which multiple active site, catalytic domains are found in a single polypeptide chain.
...
.
[ The co-location of genes with related function and the preservation of these relationships over evolutionary time indicates that ]natural selection
Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
has been operating to maintain a co-adaptive benefit.
As the early mapping of genes on the bacteriophage T4 chromosome progressed, it became evident that the arrangement of the genes is far from random. Genes with like functions tend to fall into clusters and appear to be co-adapted to each other. For instance genes that specify proteins employed in bacteriophage head morphogenesis are tightly clustered. Other examples of apparently co-adapted clusters are the genes that determine the baseplate wedge, the tail fibers, and DNA polymerase
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
accessory proteins.[ In other cases where the structural relationship of the gene products is not as evident, a co-adapted clustering based on functional interaction may also occur. Thus Obringer proposed that a specific cluster of genes, centered around the ''imm'' and ''spackle'' genes encodes proteins adapted for competition and defense at the ]DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
level.
Organs
Similar to traits on a genetic level, aspects of organs can also be subject to co-adaptation. For example, slender bones can have similar performance in regards to bearing daily loads as thicker bones, due to slender bones having more mineralized tissue. This means that slenderness and the level of mineralization have probably been co-adapted. However, due to being harder than thick bones, slender bones are generally less pliant and more prone to breakage, especially when subjected to more extreme load conditions.
Weakly electric fish are capable of creating a weak electric field using an electric organ. These electric fields can be used to communicate between individuals through electric organ discharges (EOD), which can be further modulated to create context-specific signals called ‘chirps’. Fish can sense these electric fields and signals using electroreceptors. Research on ghost knifefish indicates that the signals produced by electric fish and the way they are received might be co-adapted, as the environment in which the fish resides (both physical and social) influences selection for the chirps, EODs, and detection. Interactions between territorial fish favour different signal parameters than interactions within social groups of fish.
Behaviour
The behaviour of parents and their offspring during feeding is influenced by one another. Parents feed depending on how much their offspring begs, while the offspring begs depending on how hungry it is. This would normally lead to a conflict of interest between parent and offspring, as the offspring will want to be fed as much as possible, whereas the parent can only invest a limited amount of energy into parental care. As such, selection would occur for the combination of begging and feeding behaviours that leads to the highest fitness, resulting in co-adaptation. Parent-offspring co-adaptation can be further influenced by information asymmetry, such as female blue tits being exposed more to begging behaviour in nature, resulting in them responding more than males to similar levels of stimuli.
Partial and antagonistic co-adaptation
It is also possible for related traits to only partially co-adapt due to traits not developing at the same speed, or contradict each other entirely. Research on Australian skinks revealed that diurnal skinks have a high temperature preference and can sprint optimally at higher temperatures, while nocturnal skinks have a low preferred temperature and optimum temperature. However, the differences between high and low optimal temperatures were much smaller than between preferred temperatures, which means that nocturnal skinks sprint slower compared to their diurnal counterparts. In the case of '' Eremiascincus'', the optimum temperature and preferred temperature diverged from one another in opposite directions, creating antagonistic co-adaptation.
See also
* Evolutionary biology
Evolutionary biology is the subfield of biology that studies the evolutionary processes such as natural selection, common descent, and speciation that produced the diversity of life on Earth. In the 1930s, the discipline of evolutionary biolo ...
* Coevolution
* Mutualism
* Symbiosis
Symbiosis (Ancient Greek : living with, companionship < : together; and ''bíōsis'': living) is any type of a close and long-term biological interaction, between two organisms of different species. The two organisms, termed symbionts, can fo ...
* Linkage disequilibrium
* Epistasis
References
{{Reflist
External links
Coadaptation entry
in a dictionary on evolution
Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
.
Evolutionary biology