Citrate–malate Shuttle
   HOME

TheInfoList



OR:

The citrate-malate shuttle is a series of
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s, commonly referred to as a biochemical cycle or system, that transports
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
in the
mitochondrial matrix In the mitochondrion, the matrix is the space within the inner membrane. It can also be referred as the mitochondrial fluid. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitoc ...
across the inner and outer mitochondrial membranes for
fatty acid synthesis In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes. Two ''De novo synthesis, de novo'' fatty acid syntheses can be distinguished: cytosolic fatty acid synthesis (FAS/FASI) ...
.
Mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
are enclosed in a double membrane. As the
inner mitochondrial membrane The inner mitochondrial membrane (IMM) is the mitochondrial membrane which separates the mitochondrial matrix from the intermembrane space. Structure The structure of the inner mitochondrial membrane is extensively folded and compartmentalized. T ...
is impermeable to acetyl-CoA, the shuttle system is essential to fatty acid synthesis in the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
. It plays an important role in the generation of lipids in the liver (hepatic
lipogenesis In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into Adipose tissue, fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in adipose, fat. Lipogenesis encompasses both fatty aci ...
). The name of the citrate-malate shuttle is derived from the two intermediates – short-lived chemicals that are generated in a reaction step and consumed entirely in the next –
citrate Citric acid is an organic compound with the formula . It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relati ...
and
malate Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms ( ...
that carry the acetyl-CoA molecule across the mitochondrial double membrane. The citrate–malate shuttle is present in humans and other higher eukaryotic organisms and is closely related to the
Krebs cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of biochemical reactions that release the energy stored in nutrients through acetyl-CoA oxidation. The e ...
. The system is responsible for the transportation of malate into the mitochondrial matrix to serve as an intermediate in the Krebs cycle and the transportation of citrate into the cytosol for secretion in ''
Aspergillus niger ''Aspergillus niger'' is a mold classified within the ''Nigri'' section of the ''Aspergillus'' genus. The ''Aspergillus'' genus consists of common molds found throughout the environment within soil and water, on vegetation, in fecal matter, on de ...
'', a fungus used in the commercial production of citric acid.


Mechanism


Structure of mitochondria

All cells need energy to survive. Mitochondria is a double-membrane structure in the body cell that generates and transports essential metabolic products. The three layers of this structure are the outer membrane, intermembrane space, and inner membrane. The space inside the mitochondria is called the mitochondrial matrix, while the region outside is the cytosol. The outer membrane allows most small molecules to pass through. In contrast, the inner membrane transports specific molecules only, which is impermeable to many substances. Therefore, a shuttle is required for the transportation of molecules across the inner membrane. It acts as a pump to drive the substances from the inner membrane to the outside.


Component of system

On the surface of cells, there are many proteins. Some proteins are involved in recognition, attachment, or transportation. The citrate-malate shuttle system consists of citrate shuttle and malate shuttle, which are carrier proteins. Carrier proteins are present on the cell surface. They transport different molecules across the mitochondria. In this system, the substances being transported are malate and citrate. The starting material is acetyl-CoA. It is a molecule that is involved in ATP synthesis, protein metabolism, and lipid metabolism. As the inner membrane is not permeable to this molecule, acetyl-CoA needs to be converted into other products for effective transport. It is also the first step of the reaction.


Movement of citrate and malate

The process occurs in two cellular locations: the cytosol and the mitochondria matrix. A cycle is formed by the system, ensuring that the conversion between acetylene, oxaloacetate, citrate, and malate can continue without the need for foreign molecule addition. It involves six major steps:


Step 1

An
acetyl group In organic chemistry, an acetyl group is a functional group denoted by the chemical formula and the structure . It is sometimes represented by the symbol Ac (not to be confused with the element actinium). In IUPAC nomenclature, an acetyl grou ...
of acetyl-CoA combines with
oxaloacetate Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes ...
to form citrate, releasing the coenzyme group ( CoA) in the mitochondrial matrix.


Step 2

# The citrate binds to citrate transporters. # The shuttle delivers the citrate from the inner membrane to the
intermembrane space The intermembrane space (IMS) is the space occurring between or involving two or more membranes. In cell biology, it is most commonly described as the region between the Inner mitochondrial membrane, inner membrane and the Outer mitochondrial memb ...
. # There is a net movement of the citrate from the intermembrane space to the cytosol across the outer membrane, following the
concentration gradient Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, . Fick's first law can be used to derive his second ...
.


Step 3

# Using ATP as energy, citrate is broken down into the acetyl group and oxaloacetate. # The acetyl group joins the coenzyme in the cytosol, forming acetyl-CoA.


Step 4

Oxaloacetate is reduced by NADH to malate in the cytosol, releasing free electrons.


Step 5

The malate is transported by the malate shuttle, moving from the cytosol to the matrix.


Step 6

The malate is oxidized by NAD+ (the oxidizing agent) to oxaloacetate again, releasing NADH. The replenishment of oxaloacetate can be achieved. The oxaloacetate can react with the acetyl-CoA in the first step, completing a cycle.


Function

The citrate-malate shuttle allows the cell to produce fatty acid with excess acetyl-CoA for storage. The principle is similar to that of insulin, which turns excess glucose in the body into glycogen for storage in the liver cells and skeletal muscles, so that when there is a lack of energy intake, the body could still provide itself with glucose by breaking down glycogen. The citrate-malate shuttle enables more compact storage of chemical energy in the body in the form of fatty acid by transporting acetyl-CoA into the cytosol for fatty acid and cholesterol synthesis. The lipids produced can then be stored so that they can be used in the future. Acetyl-CoA is generated in the mitochondrial matrix from two sources:
pyruvate decarboxylation Pyruvate decarboxylation or pyruvate oxidation, also known as the link reaction (or oxidative decarboxylation of pyruvate), is the conversion of pyruvate into acetyl-CoA by the enzyme complex pyruvate dehydrogenase complex. The reaction may be ...
in
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
and the breakdown of fatty acids through
β-oxidation In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters ...
, which are both essential pathways of energy production in humans. Pyruvate decarboxylation is the step that connects glycolysis and the Krebs cycle and is regulated by the
pyruvate dehydrogenase complex Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and ...
when blood glucose levels are high. Otherwise, fatty acid β-oxidation occurs, and acetyl-CoA is required to generate ATP through the Krebs cycle. In a subject with defective citrate-malate shuttle, acetyl-CoA in mitochondria cannot exit into the cytosol. Fatty acid synthesis is hence hindered, and the body would not be able to store excess energy as efficiently as a normal subject. In addition, improper functioning of the citrate-malate shuttle can result in disruption of the Krebs cycle.


Linkage to Krebs cycle

The Krebs cycle, also known as the TCA cycle or Citric Acid cycle, is a biochemical pathway that facilitates the breakdown of glucose in a cell. Both citrate and malate involved in the citrate-malate shuttle are necessary intermediates of the Krebs cycle. Usually, oxaloacetate in the Krebs cycle is generated from the carboxylation of pyruvate in the mitochondrion; however, malate generated in the cytosol can also enter the mitochondrion through the transport protein located in the inner mitochondrial membrane to directly join the Krebs cycle. The mitochondrial transport proteins are encoded by the SLC25 gene in humans and facilitate the transportation of various metabolites, including citrate and malate, in the Krebs cycle. These transport proteins control the flow of metabolites in and out of the inner mitochondrial membrane, which is impermeable to most molecules. They connect the carbohydrate metabolism of the Krebs cycle to fatty acid synthesis in lipogenesis by catalyzing the transportation of acetyl-CoA out of the mitochondrial matrix into the cytosol, which is done in the form of citrate export from the mitochondria to the cytosol. Cytosolic citrate, meaning citrate in the cytosol, is a key substrate for the generation of energy. It releases acetyl-CoA and provides NADPH for fatty acid synthesis, and, in subsequent pathways, generates NAD+ for glycolysis. Citrate also activates acetyl-CoA carboxylase, an enzyme that is essential in the fatty acid synthesis pathway. Citrate-malate shuttle might partly or completely replace the function of the Krebs cycle in cancer cell metabolism.


Association with cancer


Alternate metabolic pathway in cancer cell

Recent study proposed that the citrate–malate shuttle may contribute to sustaining cancer cells through a β-oxidation-citrate–malate shuttle
metabolic pathway In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell (biology), cell. The reactants, products, and Metabolic intermediate, intermediates of an enzymatic reaction are known as metabolites, which are ...
. In normal cells, β-oxidation produces acetyl-CoA which enters the Krebs cycle to produce ATP, and β-oxidation cannot continue if the Krebs cycle is impaired and acetyl-CoA accumulates. However, cancer cells may carry out continuous β-oxidation by connecting it to the citrate–malate shuttle. The new metabolic pathway consists of mitochondrial transport proteins and several enzymes, including ATP-citrate lyase (ACLY) and malate dehydrogenases 1 and 2 (MDH1 and MDH2). The proposed metabolic pathway may explain the Warburg effect – that cancer cells produce energy through a suboptimal pathway – and hypoxia in cancer. The energy efficiency of this pathway is 3.76 times less than the normal β-oxidation Krebs cycle pathway, only producing 26 moles instead of 98 moles of ATP from 1 mole of palmitate. It is still unsure whether this pathway exists in cancer cells. Factors preventing this pathway from occurring includes
lipotoxicity Lipotoxicity is a metabolic syndrome that results from the accumulation of lipid intermediates in non-adipose tissue, leading to cellular dysfunction and death. The tissues normally affected include the kidneys, liver, heart and skeletal muscle. ...
of
palmitate Palmitic acid (hexadecanoic acid in IUPAC nomenclature) is a fatty acid with a 16-carbon chain. It is the most common saturated fatty acid found in animals, plants and microorganisms.Gunstone, F. D., John L. Harwood, and Albert J. Dijkstra. The Li ...
and stearate.


Liver cancer


Role of liver

The liver contains metabolic active tissues as it is responsible for detoxification, protein and carbohydrate metabolism. Therefore, It needs a lot of energy to function and contains abundant mitochondria. Any abnormalities in mitochondria would affect liver metabolism. If the liver does not work properly, it may produce excess metabolites, leading to accumulation; in contrast, it may also fail to produce certain chemicals. As a result, the imbalance of metabolites may lead to liver cancer development, i.e. hepatocarcinogenesis.


Cancer cells

The growth and development of normal cells follow a cycle in a controlled and ordered manner. When they are damaged, they will die through a process called
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
. However, apoptosis is disrupted in cancer cells, allowing them to divide and grow uncontrollably, potentially invading other tissues or organs. They will not undergo the normal death process of body cells.
Hepatocellular carcinoma Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and is currently the most common cause of death in people with cirrhosis. HCC is the third leading cause of cancer-related deaths worldwide. HCC most common ...
(HCC) is a prevalent type of liver cancer that accounts for over 80% of cases. It is lethal cancer due to the remarkable drug tolerance, spread potential and high chance of relapse. Scientists have carried out many kinds of research in finding out the risk factors of HCC progression.


Risk factors

Metabolic disorder is one of the causes of liver cancer. Mitochondria is responsible for oxidation using NAD+, which is produced in Step 4 of the citrate–malate shuttle system. In high obesity or insulin resistance (diabetes) patients, their body contains large amounts of fatty acid, the shuttle system might not generate sufficient NAD+ to metabolize the fat efficiently. They also exhibit a low NAD+ level. Thus, it is more likely for obesity or diabetes patients to develop liver cancer. Moreover, overloading of mitochondria may occur. There is an increase in reactive oxygen species level in the liver. Those species are highly reactive and would attack liver cells. They can damage the DNA strands. Cells with
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified ...
may divide abnormally. They might grow into cancer cells, resulting in HCC. Another risk factor is mutations and overexpressed citrate–malate shuttle. A high frequency mutated gene in a wide range of cancers, ''Ras'' oncogene, has a significantly close association to HCC. Many HCC patients carry this gene. They also have abnormal citrate–malate shuttle. The research of Dalian Medical University shows that there is a noticeable increase in the HCC patients’ citrate and malate levels, suggesting the possibility of higher activity of citrate–malate shuttle. This mechanism is effective when TCA cycle activity is low. The shuttle also helps the production of fatty acid and lactic acid. In liver cancer cells, the TCA cycle is blocked, causing accumulation of excess pyruvate. It is a signal of the body defense mechanism. Normally, the cancer cells would die under a high pyruvate level. However, the overexpressed citrate–malate shuttle can remove the excessive pyruvate. In this situation, the natural cell death of liver tumor will not occur. The cancer cells can keep growing. In addition, high shuttle activity is linked to increase in fatty acid generation. It is also a risk factor of HCC.


Genetics and evolution


Mitochondrial diseases

Mitochondrial disease Mitochondrial disease is a group of disorders caused by mitochondrial dysfunction. Mitochondria are the organelles that generate energy for the cell and are found in every cell of the human body except red blood cells. They convert the energy o ...
s are usually caused by mutation in mitochondrial DNA. These genes regulate different proteins synthesis, including carrier proteins and certain enzymes. The replication of mitochondrial DNA follows
binary fission Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two values (0 and 1) for each digit * Binary function, a function that takes two arguments * Binary operation, a mathematical o ...
. In this process, 1 set of genes would divide into 2 sets. The mitochondrial gene of children is inherited from their mother only. If there are any genetic defects or
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
s in the mother’s mitochondrial DNA, it would be inherited by the children. If those changes in genes can cause mitochondrial diseases, the children have a 100% possibility of acquiring the diseases. For the malate-oxaloacetate shuttle, 4 major genes are involved. They are PMDH1, MDH, PMDH2, mMDH1. PMDH-1 and PMDH-2 encode two different enzymes that provide NAD+ for the oxidation of malate. In addition, MDH and mMDH1 encode for an enzyme that directly oxidizes malate.


Importance

SLC25 is a gene that is essential for the synthesis of a wide range of mitochondrial transporters, such as citrate shuttle. Mutations in this gene can result in dysfunctional mitochondria. This leads to significant decrease in the energy production of our body cells, causing severe metabolic diseases. It can cause severe symptoms in organs or tissues that have high energy demand. These organs include the liver, brain, heart, kidneys. They require abundant functional mitochondria to function. Mitochondrial disorders caused by defective or reduced SLC25 gene expression can cause diseases, such as CAC deficiency, HHH syndrome, AGC2 deficiency (CTLN2/NICCD), , Congenital Amish microcephaly, Early epileptic encephalopathy, AAC1 deficiency, PiC (isoform A) deficiency, AGC1 deficiency,
Neuropathy Peripheral neuropathy, often shortened to neuropathy, refers to damage or disease affecting the nerves. Damage to nerves may impair sensation, movement, gland function, and/or organ function depending on which nerve fibers are affected. Neuropa ...
with striatal
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. The term "necrosis" came about in the mid-19th century and is commonly attributed to German pathologist Rudolf Virchow, who i ...
, and Congenital sideroblastic anaemia. In addition, SLC25 gene is crucial for the survival of organisms because of its high frequency in the genomics of different organisms. It indicates that this gene is favourable for the survival of a species in response to the environmental features, so it is preserved and passed along the generation. In other words, the gene is positively selected for
evolution Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
. Not only is SLC25 gene found in humans, but also in other animals, or even microorganisms like bacteria and viruses. It shows that this gene is conserved among different species. This might provide evidence for the significance and essentiality of the gene in the survival of organisms.


References

{{Reflist Biochemical reactions Citric acid cycle Metabolism