HOME

TheInfoList



OR:

Circular error probable (CEP),Circular Error Probable (CEP), Air Force Operational Test and Evaluation Center Technical Paper 6, Ver 2, July 1987, p. 1 also circular error probability or circle of equal probability, is a measure of a weapon system's precision in the
military science Military science is the study of military processes, institutions, and behavior, along with the study of warfare, and the theory and application of organized coercive force. It is mainly focused on theory, method, and practice of producing mi ...
of
ballistics Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially weapon munitions such as bullets, unguided bombs, rockets and the like; the science or art of designing and acceler ...
. It is defined as the radius of a circle, centered on the aimpoint, that is expected to enclose the landing points of 50% of the rounds; said otherwise, it is the
median The median of a set of numbers is the value separating the higher half from the lower half of a Sample (statistics), data sample, a statistical population, population, or a probability distribution. For a data set, it may be thought of as the “ ...
error radius, which is a 50% confidence interval. That is, if a given munitions design has a CEP of 100 m, when 100 munitions are targeted at the same point, an average of 50 will fall within a circle with a radius of 100 m about that point. There are associated concepts, such as the DRMS (distance root mean square), which is the square root of the average squared distance error, a form of the
standard deviation In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
. Another is the R95, which is the radius of the circle where 95% of the values would fall, a 95% confidence interval. The concept of CEP also plays a role when measuring the accuracy of a position obtained by a navigation system, such as GPS or older systems such as
LORAN LORAN (Long Range Navigation) was a hyperbolic navigation, hyperbolic radio navigation system developed in the United States during World War II. It was similar to the UK's Gee (navigation), Gee system but operated at lower frequencies in order ...
and Loran-C.


Concept

The original concept of CEP was based on a circular bivariate normal distribution (CBN) with CEP as a parameter of the CBN just as μ and σ are parameters of the
normal distribution In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f(x) = \frac ...
.
Munition Ammunition, also known as ammo, is the material fired, scattered, dropped, or detonated from any weapon or weapon system. The term includes both expendable weapons (e.g., bombs, missiles, grenades, land mines), and the component parts of oth ...
s with this distribution behavior tend to cluster around the
mean A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
impact point, with most reasonably close, progressively fewer and fewer further away, and very few at long distance. That is, if CEP is ''n'' metres, 50% of shots land within ''n'' metres of the mean impact, 43.7% between ''n'' and ''2n'', and 6.1% between ''2n'' and ''3n'' metres, and the proportion of shots that land farther than three times the CEP from the mean is only 0.2%. CEP is not a good measure of accuracy when this distribution behavior is not met. Munitions may also have larger
standard deviation In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
of range errors than the standard deviation of azimuth (deflection) errors, resulting in an elliptical
confidence region In statistics, a confidence region is a multi-dimensional generalization of a confidence interval. For a bivariate normal distribution, it is an ellipse, also known as the error ellipse. More generally, it is a set of points in an ''n''-dimension ...
. Munition samples may not be exactly on target, that is, the mean vector will not be (0,0). This is referred to as
bias Bias is a disproportionate weight ''in favor of'' or ''against'' an idea or thing, usually in a way that is inaccurate, closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individ ...
. To incorporate accuracy into the CEP concept in these conditions, CEP can be defined as the square root of the
mean square error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between ...
(MSE). The MSE will be the sum of the
variance In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
of the range error plus the variance of the azimuth error plus the
covariance In probability theory and statistics, covariance is a measure of the joint variability of two random variables. The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one ...
of the range error with the azimuth error plus the square of the bias. Thus the MSE results from pooling all these sources of error, geometrically corresponding to
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
of a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
within which 50% of rounds will land. Several methods have been introduced to estimate CEP from shot data. Included in these methods are the plug-in approach of Blischke and Halpin (1966), the Bayesian approach of Spall and Maryak (1992), and the maximum likelihood approach of Winkler and Bickert (2012). The Spall and Maryak approach applies when the shot data represent a mixture of different projectile characteristics (e.g., shots from multiple munitions types or from multiple locations directed at one target).


Conversion

While 50% is a very common definition for CEP, the circle dimension can be defined for percentages.
Percentile In statistics, a ''k''-th percentile, also known as percentile score or centile, is a score (e.g., a data point) a given percentage ''k'' of all scores in its frequency distribution exists ("exclusive" definition) or a score a given percentage ...
s can be determined by recognizing that the horizontal position error is defined by a 2D vector which components are two orthogonal Gaussian
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
s (one for each axis), assumed
uncorrelated In probability theory and statistics, two real-valued random variables, X, Y, are said to be uncorrelated if their covariance, \operatorname ,Y= \operatorname Y- \operatorname \operatorname /math>, is zero. If two variables are uncorrelated, ther ...
, each having a standard deviation \sigma. The ''distance error'' is the magnitude of that vector; it is a property of 2D Gaussian vectors that the magnitude follows the
Rayleigh distribution In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distributi ...
, with scale factor \sigma. The ''distance
root mean square In mathematics, the root mean square (abbrev. RMS, or rms) of a set of values is the square root of the set's mean square. Given a set x_i, its RMS is denoted as either x_\mathrm or \mathrm_x. The RMS is also known as the quadratic mean (denote ...
'' (DRMS), is \sigma_d=\sqrt\sigma and doubles as a sort of standard deviation, since errors within this value make up 63% of the sample represented by the bivariate circular distribution. In turn, the properties of the Rayleigh distribution are that its percentile at level F \in \%, 100\%/math> is given by the following formula: :Q(F, \sigma) = \sigma \sqrt or, expressed in terms of the DRMS: :Q(F, \sigma_d) = \sigma_d \frac The relation between Q and F are given by the following table, where the F values for DRMS and 2DRMS (twice the distance root mean square) are specific to the Rayleigh distribution and are found numerically, while the CEP, R95 (95% radius) and R99.7 (99.7% radius) values are defined based on the 68–95–99.7 rule: We can then derive a conversion table to convert values expressed for one percentile level, to another.Frank van Diggelen,
GPS Accuracy: Lies, Damn Lies, and Statistics
, ''GPS World'', Vol 9 No. 1, January 1998
Frank van Diggelen, "GNSS Accuracy – Lies, Damn Lies and Statistics", ''GPS World'', Vol 18 No. 1, January 2007. Sequel to previous article with similar titl

/ref> Said conversion table, giving the coefficients \alpha to convert X into Y=\alpha.X, is given by: For example, a GPS receiver having a 1.25 m DRMS will have a 1.25 m × 1.73 = 2.16 m 95% radius.


See also

* Probable error


References


Further reading

* * Grubbs, F. E. (1964). "Statistical measures of accuracy for riflemen and missile engineers". Ann Arbor, ML: Edwards Brothers
Ballistipedia pdf
* * * Winkler, V. and Bickert, B. (2012). "Estimation of the circular error probability for a Doppler-Beam-Sharpening-Radar-Mode," in EUSAR. 9th European Conference on Synthetic Aperture Radar, pp. 368–71, 23/26 April 2012
ieeexplore.ieee.org
* Wollschläger, Daniel (2014), "Analyzing shape, accuracy, and precision of shooting results with shotGroups"
Reference manual for shotGroups
{{Refend


External links


Circular Error Probable
i
Ballistipedia
Applied probability Military terminology Aerial bombs Artillery operation Ballistics Weapon guidance techniques Accuracy and precision Statistical distance Combat modeling