HOME

TheInfoList



OR:

In the
military science Military science is the study of military processes, institutions, and behavior, along with the study of warfare, and the theory and application of organized coercive force. It is mainly focused on theory, method, and practice of producing mil ...
of
ballistics Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially ranged weapon munitions such as bullets, unguided bombs, rockets or the like; the science or art of designing and a ...
, circular error probable (CEP) (also circular error probability or circle of equal probability) is a measure of a weapon system's precision. It is defined as the radius of a circle, centered on the mean, whose perimeter is expected to include the landing points of 50% of the rounds; said otherwise, it is the
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
error radius. That is, if a given munitions design has a CEP of 100 m, when 100 munitions are targeted at the same point, 50 will fall within a circle with a radius of 100 m around their average impact point. (The distance between the target point and the average impact point is referred to as bias.) There are associated concepts, such as the DRMS (distance root mean square), which is the square root of the average squared distance error, and R95, which is the radius of the circle where 95% of the values would fall in. The concept of CEP also plays a role when measuring the accuracy of a position obtained by a navigation system, such as
GPS The Global Positioning System (GPS), originally Navstar GPS, is a Radionavigation-satellite service, satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of t ...
or older systems such as LORAN and Loran-C.


Concept

The original concept of CEP was based on a circular bivariate normal distribution (CBN) with CEP as a parameter of the CBN just as μ and σ are parameters of the normal distribution.
Munition Ammunition (informally ammo) is the material fired, scattered, dropped, or detonated from any weapon or weapon system. Ammunition is both expendable weapons (e.g., bombs, missiles, grenades, land mines) and the component parts of other weapo ...
s with this distribution behavior tend to cluster around the mean impact point, with most reasonably close, progressively fewer and fewer further away, and very few at long distance. That is, if CEP is ''n'' metres, 50% of shots land within ''n'' metres of the mean impact, 43.7% between ''n'' and ''2n'', and 6.1% between ''2n'' and ''3n'' metres, and the proportion of shots that land farther than three times the CEP from the mean is only 0.2%. CEP is not a good measure of accuracy when this distribution behavior is not met.
Precision-guided munition A precision-guided munition (PGM, smart weapon, smart munition, smart bomb) is a guided munition intended to precisely hit a specific target, to minimize collateral damage and increase lethality against intended targets. During the First Gul ...
s generally have more "close misses" and so are not normally distributed. Munitions may also have larger
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
of range errors than the standard deviation of azimuth (deflection) errors, resulting in an elliptical confidence region. Munition samples may not be exactly on target, that is, the mean vector will not be (0,0). This is referred to as bias. To incorporate accuracy into the CEP concept in these conditions, CEP can be defined as the square root of the
mean square error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between ...
(MSE). The MSE will be the sum of the variance of the range error plus the variance of the azimuth error plus the covariance of the range error with the azimuth error plus the square of the bias. Thus the MSE results from pooling all these sources of error, geometrically corresponding to radius of a circle within which 50% of rounds will land. Several methods have been introduced to estimate CEP from shot data. Included in these methods are the plug-in approach of Blischke and Halpin (1966), the Bayesian approach of Spall and Maryak (1992), and the maximum likelihood approach of Winkler and Bickert (2012). The Spall and Maryak approach applies when the shot data represent a mixture of different projectile characteristics (e.g., shots from multiple munitions types or from multiple locations directed at one target).


Conversion

While 50% is a very common definition for CEP, the circle dimension can be defined for percentages. Percentiles can be determined by recognizing that the horizontal position error is defined by a 2D vector which components are two orthogonal Gaussian
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s (one for each axis), assumed uncorrelated, each having a standard deviation \sigma. The ''distance error'' is the magnitude of that vector; it is a property of 2D Gaussian vectors that the magnitude follows the Rayleigh distribution, with a standard deviation \sigma_d=\sqrt\sigma, called the ''distance
root mean square In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the ...
'' (DRMS). In turn, the properties of the Rayleigh distribution are that its percentile at level F\in \%,100\%/math> is given by the following formula: :Q(F,\sigma)=\sigma \sqrt or, expressed in terms of the DRMS: :Q(F,\sigma_d)=\sigma_d \frac The relation between Q and F are given by the following table, where the F values for DRMS and 2DRMS (twice the distance root mean square) are specific to the Rayleigh distribution and are found numerically, while the CEP, R95 (95% radius) and R99.7 (99.7% radius) values are defined based on the
68–95–99.7 rule In statistics, the 68–95–99.7 rule, also known as the empirical rule, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: 68%, 95%, and 99.7% of the values lie within one, ...
We can then derive a conversion table to convert values expressed for one percentile level, to another.Frank van Diggelen,
GPS Accuracy: Lies, Damn Lies, and Statistics
, ''GPS World'', Vol 9 No. 1, January 1998
Frank van Diggelen, "GNSS Accuracy – Lies, Damn Lies and Statistics", ''GPS World'', Vol 18 No. 1, January 2007. Sequel to previous article with similar titl

/ref> Said conversion table, giving the coefficients \alpha to convert X into Y=\alpha.X, is given by: For example, a GPS receiver having a 1.25 m DRMS will have a 1.25 m\times1.73 = 2.16 m 95% radius. Warning: often, sensor datasheets or other publications state "RMS" values which in general, ''but not always'',For instance, the International Hydrographic Organization, in the IHO standard for hydrographic survey S-44 (fifth edition) defines "the 95% confidence level for 2D quantities (e.g. position) is defined as 2.45 x standard deviation", which is true only if we are speaking about the standard deviation of the underlying 1D variable, defined as \sigma above. stand for "DRMS" values. Also, be wary of habits coming from properties of a 1D normal distribution, such as the 68–95–99.7 rule, 68-95-99.7 rule, in essence trying to say that "R95 = 2DRMS". As shown above, these properties simply ''do not'' translate to the distance errors. Finally, mind that these values are obtained for a theoretical distribution; while generally being true for real data, these may be affected by other effects, which the model does not represent.


See also

*
Probable error In statistics, probable error defines the half-range of an interval about a central point for the distribution, such that half of the values from the distribution will lie within the interval and half outside.Dodge, Y. (2006) ''The Oxford Dictiona ...


References


Further reading

* * * Grubbs, F. E. (1964). "Statistical measures of accuracy for riflemen and missile engineers". Ann Arbor, ML: Edwards Brothers
Ballistipedia pdf
* * Daniel Wollschläger (2014), "Analyzing shape, accuracy, and precision of shooting results with shotGroups"
Reference manual for shotGroups
* Winkler, V. and Bickert, B. (2012). "Estimation of the circular error probability for a Doppler-Beam-Sharpening-Radar-Mode," in EUSAR. 9th European Conference on Synthetic Aperture Radar, pp. 368–71, 23/26 April 2012
ieeexplore.ieee.org
{{Refend


External links


Circular Error Probable
i
Ballistipedia
Applied probability Military terminology Aerial bombs Artillery operation Ballistics Weapon guidance Accuracy and precision Statistical distance