HOME

TheInfoList



OR:

Christopher Cherniak is an American
neuroscientist A neuroscientist (or neurobiologist) is a scientist who has specialised knowledge in neuroscience, a branch of biology that deals with the physiology, biochemistry, psychology, anatomy and molecular biology of neurons, Biological neural network, n ...
, a member of the
University of Maryland The University of Maryland, College Park (University of Maryland, UMD, or simply Maryland) is a public university, public Land-grant university, land-grant research university in College Park, Maryland. Founded in 1856, UMD is the Flagship un ...
Philosophy Department. Cherniak’s research trajectory started in theory of knowledge and led into
computational neuroanatomy Neuroanatomy is the study of the structure and organization of the nervous system. In contrast to animals with radial symmetry, whose nervous system consists of a distributed network of cells, animals with bilateral symmetry have segregated, defin ...
and
genomics Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dim ...
. The underlying linkage between the areas concerns models of the agent: The work began with more realistic, bounded-resource models of rationality. From this epistemology in turn stemmed a research program concerning optimal-wiring models of global brain and genome anatomy, a structuralist approach.


Minimal agents

Cherniak’s monograph ''Minimal Rationality'' states that perhaps the most fundamental psychological law is that humans are finite beings. Bounded-resource models of the agent characterize human rationality as falling between nothing and perfection. The apercu motivating the rationality critiques is conveyed by the realization that standard idealizations entail some deductive omniscience - for instance, triviality of portions of the deductive sciences. Such ideal agent/logicians, if computational, would have to violate
Church's Theorem In mathematics and computer science, the ' (, ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. The problem asks for an algorithm that considers, as input, a statement and answers "Yes" or "No" according to whether the stat ...
on undecidability of first-order logic. This insight in turn indicates that
NP-completeness In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by tryin ...
is of parallel interest: computational intractability of a cosmos-consuming scale is a practical counterpart to traditional absolute uncomputability - another layer of impossibility for the idealizations. This is part of the philosophical significance of computational complexity. This research program proceeds from a holistic rather than compartmentalized perspective, where philosophy and science are distinct but inextricably interconnected. For instance, the classical paradoxes of semantics (e.g., the
Liar Paradox In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the trut ...
) and set theory (e.g.,
Russell's Paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contain ...
) can be reexamined not as pathology, but instead as signs of use of “quick and dirty heuristics” - that is, speed-reliability tradeoffs of correctness for feasibility. Three disparate fields thereby converge: (a) computational complexity theory, (b) empirical psychology of quick and dirty heuristics, (c) philosophical theory of bounded-resource rationality. In this way, the bounded rationality models serve as a foundation of current “
behavioral economics Behavioral economics studies the effects of psychological, cognitive, emotional, cultural and social factors on the decisions of individuals or institutions, such as how those decisions vary from those implied by classical economic theory. ...
”.


Brainwiring optimization

In addition, it is perhaps natural to extend the bounded-resource approach along these lines down from rationality to the brainwiring hardware level. In particular, longrange connectivity is a critically constrained neural resource, with strong evolutionary pressure to employ efficiently. Connection minimization seems a first law of brain
tractography In neuroscience, tractography is a 3D modeling technique used to visually represent nerve tracts using data collected by diffusion MRI. It uses special techniques of magnetic resonance imaging (MRI) and computer-based diffusion MRI. The results ...
, an organizing principle driving neuroanatomy. The Cherniak laboratory has therefore been gauging how well wiring-optimization ideas from computer microchip design apply to brain structure. "Save wire" turns out to be a strongly predictive model. Wiring minimization can be detected at multiple levels (e.g., placement of the entire brain, layout of its ganglia and/or cortex areas, subcellular architecture of dendrite arbors, etc.). Much of this biological structure seems to arise "for free, directly from physics". A key specific wiring problem is component placement optimization: Given a set of interconnected components, what are the positionings of the components that minimize total connection costs (e.g., wirelength)? This concept seems to account quite precisely for aspects of neuroanatomy at multiple hierarchical levels. For instance, the nervous system of the roundworm ''
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (r ...
'' includes eleven ganglionic components, which have 11! (~40,000,000) alternative possible anteroposterior orderings. In fact, the actual here is the ideal, in that the actual layout turns out to require the minimum total wirelength, a predictive success story. However, such problems are NP-complete; exact solutions generally appear to entail bruteforce searches, with exponentially exploding costs. Despite local minimum traps, this neuroanatomy optimization can be approximated well by “mesh of springs” energy-minimization mechanisms. (Cf. discussion below of the “genomic bottleneck”.) A corresponding approach can be applied to placement of interconnected functional areas of
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting o ...
. A first strategy is to use a simpler connection cost measure, conformance of a cortex layout to a wire-saving Adjacency Heuristic: If components are connected, then they are placed adjacent to each other. Sampling of all possible layouts is still required to verify the best ones. For 17 core visual areas of macaque cortex, the actual layout of this subsystem ranks in the top 10−7 layouts best minimizing their adjacency costing. Similar high optimality rankings also hold for the core set of visual areas of cat cortex, and also for rat olfactory cortex and amygdala. In addition, a “Size Law” appears to apply to systems with such local-global tradeoffs: If a complete system is in fact perfectly optimized, then the smaller the subset of it evaluated by itself, the poorer the optimization tends to appear. (This is a generalization of a related perspective-dependent idea seen in theology, to account for the
problem of evil The problem of evil is the question of how to reconcile the existence of evil and suffering with an omnipotent, omnibenevolent, and omniscient God.The Stanford Encyclopedia of Philosophy,The Problem of Evil, Michael TooleyThe Internet Encyclo ...
– of apparent imperfections in the Universe with an omnipotent, benevolent deity.) The Size Law applies well to each of the above cortex systems, as well as elsewhere (e.g., for microchip design). With such a network optimization framework, these “Save wire” results have been extended and replicated for the complete living human cerebrum via fMRI, another predictive success. Neuron dendrite and axon arbors also appear significantly to approximate minimum-cost Steiner trees. These structures are derivable via fluid dynamics. This seems to constitute some of the most complex biostructure presently obtainable from simple (non-DNA) physical processes. Such a “Physics suffices” account of biological morphogenesis constitutes a “Nongenomic Nativism”. One rationale for the pre-biotic pervading the biotic in this way is to cope with the “genomic bottleneck”: Like other organism systems, the genome has limited capacities. So the more neuroanatomy “for free, directly from physics”, the less the genome information-carrying load. Another question arises: Neural wiring minimization is of course valuable, but why should it seem to have such a high priority – sometimes apparently near-maximal? The significance of ultra-fine neural optimization remains an open question. An additional issue concerns how the intentional level of mind meshes with the hardware level of brain. Prima facie, that relationship appears in tension: In some aspects, the brainwiring appears virtually perfectly optimized, yet the rationality has layers of impossibility between it and perfection. Perhaps this is another manifestation of irreducibility of the mental – the well-known poor fit of the two domains with each other.


Genome as nanobrain

A next chapter of this research program: Concepts from the theory of computation can be applied to understand the structure and function of organisms' DNA. The Crick-Watson double-helix model emerged at the same place and time as Turing's final work, namely Cambridge around 1950, so the idea of DNA-as-Turing-machine-tape has floated around for decades. In particular, the genome can be treated like a "nano-brain” or pico-computer to see whether similar connection minimization strategies also appear in gene networks. As sketched above, for decades, wiring optimization in the brain has been reported that begins to approach some of the most precisely confirmed predictions in neuroscience. Now a connection-minimization idea is being explored for the human genome. Information transmission may not be cost-free even within a cell, nucleus, or genome. For example, a statistically significant supra-chromosomal homunculus – a global representation of the human body - appears to extend over the entire genome in the nucleus. This is a strategy for connection cost minimization (e.g., cf. body maps reported in sensory and motor cortex since the 19th century). In addition, finer-scale somatotopic mappings seem to occur on individual autosomal chromosomes.


References


External links


Cherniak Home Page
{{DEFAULTSORT:Cherniak, Christopher 1945 births Living people American philosophy academics American short story writers American neuroscientists Philosophy teachers University of Maryland, College Park faculty