HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a figure is chiral (and said to have chirality) if it is not identical to its
mirror image A mirror image (in a plane mirror) is a reflection (physics), reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical phenomenon, optical effect, it r ...
, or, more precisely, if it cannot be mapped to its mirror image by
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
s and
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
s alone. An object that is not chiral is said to be ''achiral''. A chiral object and its mirror image are said to be enantiomorphs. The word ''chirality'' is derived from the Greek (cheir), the hand, the most familiar chiral object; the word ''enantiomorph'' stems from the Greek (enantios) 'opposite' + (morphe) 'form'.


Examples

Some chiral three-dimensional objects, such as the
helix A helix (; ) is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is for ...
, can be assigned a right or left
handedness In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to and causing it to be stronger, faster or more Fine motor skill, dextrous. The other hand, comparatively often the weaker, less dext ...
, according to the
right-hand rule In mathematics and physics, the right-hand rule is a Convention (norm), convention and a mnemonic, utilized to define the orientation (vector space), orientation of Cartesian coordinate system, axes in three-dimensional space and to determine the ...
. Many other familiar objects exhibit the same chiral symmetry of the human body, such as gloves and shoes. Right shoes differ from left shoes only by being mirror images of each other. In contrast thin gloves may not be considered chiral if you can wear them inside-out. The J-, L-, S- and Z-shaped '' tetrominoes'' of the popular video game
Tetris ''Tetris'' () is a puzzle video game created in 1985 by Alexey Pajitnov, a Soviet software engineer. In ''Tetris'', falling tetromino shapes must be neatly sorted into a pile; once a horizontal line of the game board is filled in, it disa ...
also exhibit chirality, but only in a two-dimensional space. Individually they contain no mirror symmetry in the plane.


Chirality and symmetry group

A figure is achiral if and only if its
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
contains at least one '' orientation-reversing'' isometry. (In Euclidean geometry any
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
can be written as v\mapsto Av+b with an
orthogonal matrix In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identi ...
A and a vector b. The
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of A is either 1 or −1 then. If it is −1 the isometry is orientation-reversing, otherwise it is orientation-preserving. A general definition of chirality based on group theory exists. It does not refer to any orientation concept: an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
is direct if and only if it is a product of squares of isometries, and if not, it is an indirect isometry. The resulting chirality definition works in spacetime.


Chirality in two dimensions

In two dimensions, every figure which possesses an
axis of symmetry An axis (: axes) may refer to: Mathematics *A specific line (often a directed line) that plays an important role in some contexts. In particular: ** Coordinate axis of a coordinate system *** ''x''-axis, ''y''-axis, ''z''-axis, common names f ...
is achiral, and it can be shown that every ''bounded'' achiral figure must have an axis of symmetry. (An ''axis of symmetry'' of a figure F is a line L, such that F is invariant under the mapping (x,y)\mapsto(x,-y), when L is chosen to be the x-axis of the coordinate system.) For that reason, a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
is achiral if it is
equilateral An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the ...
or
isosceles In geometry, an isosceles triangle () is a triangle that has two sides of equal length and two angles of equal measure. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides ...
, and is chiral if it is scalene. Consider the following pattern: : This figure is chiral, as it is not identical to its mirror image: : But if one prolongs the pattern in both directions to infinity, one receives an (unbounded) achiral figure which has no axis of symmetry. Its symmetry group is a frieze group generated by a single
glide reflection In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation. Bec ...
.


Chirality in three dimensions

In three dimensions, every figure that possesses a mirror plane of symmetry ''S1'', an inversion center of symmetry ''S2'', or a higher
improper rotation In geometry, an improper rotation. (also called rotation-reflection, rotoreflection, rotary reflection,. or rotoinversion) is an isometry in Euclidean space that is a combination of a Rotation (geometry), rotation about an axis and a reflection ( ...
(rotoreflection) ''Sn'' axis of symmetry is achiral. (A ''plane of symmetry'' of a figure F is a plane P, such that F is invariant under the mapping (x,y,z)\mapsto(x,y,-z), when P is chosen to be the x-y-plane of the coordinate system. A ''center of symmetry'' of a figure F is a point C, such that F is invariant under the mapping (x,y,z)\mapsto(-x,-y,-z), when C is chosen to be the origin of the coordinate system.) Note, however, that there are achiral figures lacking both plane and center of symmetry. An example is the figure :F_0=\left\ which is invariant under the orientation reversing isometry (x,y,z)\mapsto(-y,x,-z) and thus achiral, but it has neither plane nor center of symmetry. The figure :F_1=\left\ also is achiral as the origin is a center of symmetry, but it lacks a plane of symmetry. Achiral figures can have a center axis.


Knot theory

A
knot A knot is an intentional complication in Rope, cordage which may be practical or decorative, or both. Practical knots are classified by function, including List of hitch knots, hitches, List of bend knots, bends, List of loop knots, loop knots, ...
is called achiral if it can be continuously deformed into its mirror image, otherwise it is called a chiral knot. For example, the
unknot In the knot theory, mathematical theory of knots, the unknot, not knot, or trivial knot, is the least knotted of all knots. Intuitively, the unknot is a closed loop of rope without a Knot (mathematics), knot tied into it, unknotted. To a knot ...
and the
figure-eight knot The figure-eight knot or figure-of-eight knot is a type of stopper knot. It is very important in sailing, rock climbing and caving as a method of stopping ropes from running out of retaining devices. Like the overhand knot, which will jam under ...
are achiral, whereas the
trefoil knot In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot (mathematics), knot. The trefoil can be obtained by joining the two loose ends of a common overhand knot, resulting in a knotted loop (topology ...
is chiral.


See also

* Chiral polytope *
Chirality (physics) A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless partic ...
*
Parity (physics) In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point ref ...
*
Chirality (chemistry) In chemistry, a molecule or ion is called chiral () if it cannot be superposed on its mirror image by any combination of rotation (geometry), rotations, translation (geometry), translations, and some Conformational isomerism, conformational cha ...
*
Asymmetry Asymmetry is the absence of, or a violation of, symmetry (the property of an object being invariant to a transformation, such as reflection). Symmetry is an important property of both physical and abstract systems and it may be displayed in pre ...
*
Skewness In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined. For a unimodal ...
* Vertex algebra


References


Further reading

*{{cite book, title=When Topology Meets Chemistry, title-link=When Topology Meets Chemistry, first=Erica, last=Flapan, author-link=Erica Flapan, year=2000, publisher=Cambridge University Press and Mathematical Association of America, series=Outlook, isbn=0-521-66254-0


External links


Symmetry, Chirality, Symmetry Measures and Chirality Measures:
General Definitions
Chiral Polyhedra
by Eric W. Weisstein,
The Wolfram Demonstrations Project The Wolfram Demonstrations Project is an open-source collection of interactive programmes called Demonstrations. It is hosted by Wolfram Research. At its launch, it contained 1300 demonstrations but has grown to over 10,000. The site won a Pa ...
.
Chiral manifold
at the Manifold Atlas. Knot theory Polyhedra Chirality Topology