HOME

TheInfoList



OR:

In mathematical
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
, Chang's model is the smallest
inner model In set theory, a branch of mathematical logic, an inner model for a theory ''T'' is a substructure of a model ''M'' of a set theory that is both a model for ''T'' and contains all the ordinals of ''M''. Definition Let L = \langle \in \rangle be ...
of set theory closed under countable sequences. It was introduced by . More generally Chang introduced the smallest inner model closed under taking sequences of length less than κ for any infinite
cardinal Cardinal or The Cardinal may refer to: Animals * Cardinal (bird) or Cardinalidae, a family of North and South American birds **''Cardinalis'', genus of cardinal in the family Cardinalidae **''Cardinalis cardinalis'', or northern cardinal, the ...
κ. For κ countable this is the constructible universe, and for κ the first uncountable cardinal it is Chang's model. Chang's model is a model of ZF.
Kenneth Kunen Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic topology and ...
proved in that the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
fails in Chang's model provided there are sufficient large cardinals, such as uncountable many measurable cardinals.


References

* * Inner model theory {{Settheory-stub