HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, a categorical variable (also called qualitative variable) is a variable that can take on one of a limited, and usually fixed, number of possible values, assigning each individual or other unit of observation to a particular group or nominal category on the basis of some
qualitative property Qualitative properties are properties that are observed and can generally not be measured with a numerical result, unlike quantitative properties, which have numerical characteristics. Description Qualitative properties are properties that are ...
. In computer science and some branches of mathematics, categorical variables are referred to as enumerations or enumerated types. Commonly (though not in this article), each of the possible values of a categorical variable is referred to as a level. The
probability distribution In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
associated with a
random In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. ...
categorical variable is called a
categorical distribution In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can ...
. Categorical data is the
statistical data type In statistics, data can have any of various ''types''. Statistical data types include categorical (e.g. country), directional ( angles or directions, e.g. wind measurements), count (a whole number of events), or real intervals (e.g. measures ...
consisting of categorical variables or of data that has been converted into that form, for example as grouped data. More specifically, categorical data may derive from observations made of
qualitative data Qualitative properties are properties that are observed and can generally not be measured with a numerical result, unlike Quantitative property, quantitative properties, which have numerical characteristics. Description Qualitative properties a ...
that are summarised as counts or
cross tabulation In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the multivariate frequency distribution of the variables. They are heavily used in survey research, business int ...
s, or from observations of
quantitative data Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philoso ...
grouped within given intervals. Often, purely categorical data are summarised in the form of a
contingency table In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the multivariate frequency distribution of the variables. They are heavily used in survey research, business int ...
. However, particularly when considering data analysis, it is common to use the term "categorical data" to apply to data sets that, while containing some categorical variables, may also contain non-categorical variables. Ordinal variables have a meaningful ordering, while nominal variables have no meaningful ordering. A categorical variable that can take on exactly two values is termed a '' binary variable'' or a dichotomous variable; an important special case is the Bernoulli variable. Categorical variables with more than two possible values are called polytomous variables; categorical variables are often assumed to be polytomous unless otherwise specified.
Discretization In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numeri ...
is treating continuous data as if it were categorical. Dichotomization is treating continuous data or polytomous variables as if they were binary variables. Regression analysis often treats category membership with one or more quantitative dummy variables.


Examples of categorical variables

Examples of values that might be represented in a categorical variable: *Demographic information of a population: gender, disease status. *The
blood type A blood type (also known as a blood group) is based on the presence and absence of antibody, antibodies and Heredity, inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates, glycop ...
of a person: A, B, AB or O. *The
political party A political party is an organization that coordinates candidates to compete in a particular area's elections. It is common for the members of a party to hold similar ideas about politics, and parties may promote specific political ideology, ...
that a voter might vote for, e.g. ''Green Party'', ''Christian Democrat'', ''Social Democrat'', etc. *The type of a rock:
igneous Igneous rock ( ), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava. The magma can be derived from partial ...
,
sedimentary Sedimentary rocks are types of rock formed by the cementation of sediments—i.e. particles made of minerals (geological detritus) or organic matter (biological detritus)—that have been accumulated or deposited at Earth's surface. Sedime ...
or
metamorphic Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causi ...
. *The identity of a particular word (e.g., in a
language model A language model is a model of the human brain's ability to produce natural language. Language models are useful for a variety of tasks, including speech recognition, machine translation,Andreas, Jacob, Andreas Vlachos, and Stephen Clark (2013)"S ...
): One of ''V'' possible choices, for a vocabulary of size ''V''.


Notation

For ease in statistical processing, categorical variables may be assigned numeric indices, e.g. 1 through ''K'' for a ''K''-way categorical variable (i.e. a variable that can express exactly ''K'' possible values). In general, however, the numbers are arbitrary, and have no significance beyond simply providing a convenient label for a particular value. In other words, the values in a categorical variable exist on a nominal scale: they each represent a logically separate concept, cannot necessarily be meaningfully ordered, and cannot be otherwise manipulated as numbers could be. Instead, valid operations are equivalence,
set membership In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called containing the first four positive integers (A = \), one could say that "3 is an element of ", expressed ...
, and other set-related operations. As a result, the
central tendency In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution.Weisberg H.F (1992) ''Central Tendency and Variability'', Sage University Paper Series on Quantitative Applications in ...
of a set of categorical variables is given by its mode; neither the
mean A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
nor the
median The median of a set of numbers is the value separating the higher half from the lower half of a Sample (statistics), data sample, a statistical population, population, or a probability distribution. For a data set, it may be thought of as the “ ...
can be defined. As an example, given a set of people, we can consider the set of categorical variables corresponding to their last names. We can consider operations such as equivalence (whether two people have the same last name), set membership (whether a person has a name in a given list), counting (how many people have a given last name), or finding the mode (which name occurs most often). However, we cannot meaningfully compute the "sum" of Smith + Johnson, or ask whether Smith is "less than" or "greater than" Johnson. As a result, we cannot meaningfully ask what the "average name" (the mean) or the "middle-most name" (the median) is in a set of names. This ignores the concept of
alphabetical order Alphabetical order is a system whereby character strings are placed in order based on the position of the characters in the conventional ordering of an alphabet. It is one of the methods of collation. In mathematics, a lexicographical order is ...
, which is a property that is not inherent in the names themselves, but in the way we construct the labels. For example, if we write the names in
Cyrillic The Cyrillic script ( ) is a writing system used for various languages across Eurasia. It is the designated national script in various Slavic, Turkic, Mongolic, Uralic, Caucasian and Iranic-speaking countries in Southeastern Europe, Ea ...
and consider the Cyrillic ordering of letters, we might get a different result of evaluating "Smith < Johnson" than if we write the names in the standard
Latin alphabet The Latin alphabet, also known as the Roman alphabet, is the collection of letters originally used by the Ancient Rome, ancient Romans to write the Latin language. Largely unaltered except several letters splitting—i.e. from , and from � ...
; and if we write the names in
Chinese characters Chinese characters are logographs used Written Chinese, to write the Chinese languages and others from regions historically influenced by Chinese culture. Of the four independently invented writing systems accepted by scholars, they represe ...
, we cannot meaningfully evaluate "Smith < Johnson" at all, because no consistent ordering is defined for such characters. However, if we do consider the names as written, e.g., in the Latin alphabet, and define an ordering corresponding to standard alphabetical order, then we have effectively converted them into ordinal variables defined on an
ordinal scale Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. These data exist on an ordinal scale, one of four levels of measurement described ...
.


Number of possible values

Categorical
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
s are normally described statistically by a
categorical distribution In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can ...
, which allows an arbitrary ''K''-way categorical variable to be expressed with separate probabilities specified for each of the ''K'' possible outcomes. Such multiple-category categorical variables are often analyzed using a
multinomial distribution In probability theory, the multinomial distribution is a generalization of the binomial distribution. For example, it models the probability of counts for each side of a ''k''-sided die rolled ''n'' times. For ''n'' statistical independence, indepen ...
, which counts the frequency of each possible combination of numbers of occurrences of the various categories. Regression analysis on categorical outcomes is accomplished through
multinomial logistic regression In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the prob ...
,
multinomial probit In statistics and econometrics, the multinomial probit model is a generalization of the probit model used when there are several possible categories that the dependent variable can fall into. As such, it is an alternative to the multinomial logi ...
or a related type of
discrete choice In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such c ...
model. Categorical variables that have only two possible outcomes (e.g., "yes" vs. "no" or "success" vs. "failure") are known as ''binary variables'' (or ''Bernoulli variables''). Because of their importance, these variables are often considered a separate category, with a separate distribution (the
Bernoulli distribution In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, is the discrete probability distribution of a random variable which takes the value 1 with probability p and the value 0 with pro ...
) and separate regression models (
logistic regression In statistics, a logistic model (or logit model) is a statistical model that models the logit, log-odds of an event as a linear function (calculus), linear combination of one or more independent variables. In regression analysis, logistic regres ...
,
probit regression In statistics, a probit model is a type of regression where the dependent variable can take only two values, for example married or not married. The word is a portmanteau, coming from ''probability'' + ''unit''. The purpose of the model is to e ...
, etc.). As a result, the term "categorical variable" is often reserved for cases with 3 or more outcomes, sometimes termed a ''multi-way'' variable in opposition to a binary variable. It is also possible to consider categorical variables where the number of categories is not fixed in advance. As an example, for a categorical variable describing a particular word, we might not know in advance the size of the vocabulary, and we would like to allow for the possibility of encountering words that we have not already seen. Standard statistical models, such as those involving the
categorical distribution In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can ...
and
multinomial logistic regression In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the prob ...
, assume that the number of categories is known in advance, and changing the number of categories on the fly is tricky. In such cases, more advanced techniques must be used. An example is the Dirichlet process, which falls in the realm of
nonparametric statistics Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric s ...
. In such a case, it is logically assumed that an infinite number of categories exist, but at any one time most of them (in fact, all but a finite number) have never been seen. All formulas are phrased in terms of the number of categories actually seen so far rather than the (infinite) total number of potential categories in existence, and methods are created for incremental updating of statistical distributions, including adding "new" categories.


Categorical variables and regression

Categorical variables represent a qualitative method of scoring data (i.e. represents categories or group membership). These can be included as
independent variable A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function ...
s in a regression analysis or as dependent variables in
logistic regression In statistics, a logistic model (or logit model) is a statistical model that models the logit, log-odds of an event as a linear function (calculus), linear combination of one or more independent variables. In regression analysis, logistic regres ...
or
probit regression In statistics, a probit model is a type of regression where the dependent variable can take only two values, for example married or not married. The word is a portmanteau, coming from ''probability'' + ''unit''. The purpose of the model is to e ...
, but must be converted to
quantitative data Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philoso ...
in order to be able to analyze the data. One does so through the use of coding systems. Analyses are conducted such that only ''g'' -1 (''g'' being the number of groups) are coded. This minimizes redundancy while still representing the complete data set as no additional information would be gained from coding the total ''g'' groups: for example, when coding gender (where ''g'' = 2: male and female), if we only code females everyone left over would necessarily be males. In general, the group that one does not code for is the group of least interest. There are three main coding systems typically used in the analysis of categorical variables in regression: dummy coding, effects coding, and contrast coding. The regression equation takes the form of ''Y = bX + a'', where ''b'' is the slope and gives the weight empirically assigned to an explanator, ''X'' is the explanatory variable, and ''a'' is the ''Y''-intercept, and these values take on different meanings based on the coding system used. The choice of coding system does not affect the '' F'' or ''R''2 statistics. However, one chooses a coding system based on the comparison of interest since the interpretation of ''b'' values will vary.


Dummy coding

Dummy coding is used when there is a control or comparison group in mind. One is therefore analyzing the data of one group in relation to the comparison group: ''a'' represents the mean of the control group and ''b'' is the difference between the mean of the experimental group and the mean of the control group. It is suggested that three criteria be met for specifying a suitable control group: the group should be a well-established group (e.g. should not be an "other" category), there should be a logical reason for selecting this group as a comparison (e.g. the group is anticipated to score highest on the dependent variable), and finally, the group's sample size should be substantive and not small compared to the other groups. In dummy coding, the reference group is assigned a value of 0 for each code variable, the group of interest for comparison to the reference group is assigned a value of 1 for its specified code variable, while all other groups are assigned 0 for that particular code variable. The ''b'' values should be interpreted such that the experimental group is being compared against the control group. Therefore, yielding a negative b value would entail the experimental group have scored less than the control group on the
dependent variable A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical functio ...
. To illustrate this, suppose that we are measuring optimism among several nationalities and we have decided that French people would serve as a useful control. If we are comparing them against Italians, and we observe a negative ''b'' value, this would suggest Italians obtain lower optimism scores on average. The following table is an example of dummy coding with ''French'' as the control group and C1, C2, and C3 respectively being the codes for ''Italian'', ''German'', and ''Other'' (neither French nor Italian nor German):


Effects coding

In the effects coding system, data are analyzed through comparing one group to all other groups. Unlike dummy coding, there is no control group. Rather, the comparison is being made at the mean of all groups combined (''a'' is now the grand mean). Therefore, one is not looking for data in relation to another group but rather, one is seeking data in relation to the grand mean. Effects coding can either be weighted or unweighted. Weighted effects coding is simply calculating a weighted grand mean, thus taking into account the sample size in each variable. This is most appropriate in situations where the sample is representative of the population in question. Unweighted effects coding is most appropriate in situations where differences in sample size are the result of incidental factors. The interpretation of ''b'' is different for each: in unweighted effects coding ''b'' is the difference between the mean of the experimental group and the grand mean, whereas in the weighted situation it is the mean of the experimental group minus the weighted grand mean. In effects coding, we code the group of interest with a 1, just as we would for dummy coding. The principal difference is that we code −1 for the group we are least interested in. Since we continue to use a ''g'' - 1 coding scheme, it is in fact the −1 coded group that will not produce data, hence the fact that we are least interested in that group. A code of 0 is assigned to all other groups. The ''b'' values should be interpreted such that the experimental group is being compared against the mean of all groups combined (or weighted grand mean in the case of weighted effects coding). Therefore, yielding a negative ''b'' value would entail the coded group as having scored less than the mean of all groups on the dependent variable. Using our previous example of optimism scores among nationalities, if the group of interest is Italians, observing a negative ''b'' value suggest they obtain a lower optimism score. The following table is an example of effects coding with ''Other'' as the group of least interest.


Contrast coding

The contrast coding system allows a researcher to directly ask specific questions. Rather than having the coding system dictate the comparison being made (i.e., against a control group as in dummy coding, or against all groups as in effects coding) one can design a unique comparison catering to one's specific research question. This tailored hypothesis is generally based on previous theory and/or research. The hypotheses proposed are generally as follows: first, there is the central hypothesis which postulates a large difference between two sets of groups; the second hypothesis suggests that within each set, the differences among the groups are small. Through its
a priori ('from the earlier') and ('from the later') are Latin phrases used in philosophy to distinguish types of knowledge, Justification (epistemology), justification, or argument by their reliance on experience. knowledge is independent from any ...
focused hypotheses, contrast coding may yield an increase in power of the
statistical test A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. ...
when compared with the less directed previous coding systems. Certain differences emerge when we compare our a priori coefficients between ANOVA and regression. Unlike when used in ANOVA, where it is at the researcher's discretion whether they choose coefficient values that are either
orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
or non-orthogonal, in regression, it is essential that the coefficient values assigned in contrast coding be orthogonal. Furthermore, in regression, coefficient values must be either in fractional or decimal form. They cannot take on interval values. The construction of contrast codes is restricted by three rules: # The sum of the contrast coefficients per each code variable must equal zero. # The difference between the sum of the positive coefficients and the sum of the negative coefficients should equal 1. # Coded variables should be orthogonal. Violating rule 2 produces accurate ''R''2 and ''F'' values, indicating that we would reach the same conclusions about whether or not there is a significant difference; however, we can no longer interpret the ''b'' values as a mean difference. To illustrate the construction of contrast codes consider the following table. Coefficients were chosen to illustrate our a priori hypotheses: Hypothesis 1: French and Italian persons will score higher on optimism than Germans (French = +0.33, Italian = +0.33, German = −0.66). This is illustrated through assigning the same coefficient to the French and Italian categories and a different one to the Germans. The signs assigned indicate the direction of the relationship (hence giving Germans a negative sign is indicative of their lower hypothesized optimism scores). Hypothesis 2: French and Italians are expected to differ on their optimism scores (French = +0.50, Italian = −0.50, German = 0). Here, assigning a zero value to Germans demonstrates their non-inclusion in the analysis of this hypothesis. Again, the signs assigned are indicative of the proposed relationship.


Nonsense coding

Nonsense coding occurs when one uses arbitrary values in place of the designated "0"s "1"s and "-1"s seen in the previous coding systems. Although it produces correct mean values for the variables, the use of nonsense coding is not recommended as it will lead to uninterpretable statistical results.


Embeddings

''Embeddings'' are codings of categorical values into low-dimensional real-valued (sometimes complex-valued) vector spaces, usually in such a way that ‘similar’ values are assigned ‘similar’ vectors, or with respect to some other kind of criterion making the vectors useful for the respective application. A common special case are
word embedding In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that ...
s, where the possible values of the categorical variable are the
word A word is a basic element of language that carries semantics, meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no consensus among linguist ...
s in a
language Language is a structured system of communication that consists of grammar and vocabulary. It is the primary means by which humans convey meaning, both in spoken and signed language, signed forms, and may also be conveyed through writing syste ...
and words with similar meanings are to be assigned similar vectors.


Interactions

An interaction may arise when considering the relationship among three or more variables, and describes a situation in which the simultaneous influence of two variables on a third is not additive. Interactions may arise with categorical variables in two ways: either categorical by categorical variable interactions, or categorical by continuous variable interactions.


Categorical by categorical variable interactions

This type of interaction arises when we have two categorical variables. In order to probe this type of interaction, one would code using the system that addresses the researcher's hypothesis most appropriately. The product of the codes yields the interaction. One may then calculate the ''b'' value and determine whether the interaction is significant.


Categorical by continuous variable interactions

Simple slopes analysis is a common post hoc test used in regression which is similar to the simple effects analysis in ANOVA, used to analyze interactions. In this test, we are examining the simple slopes of one independent variable at specific values of the other independent variable. Such a test is not limited to use with continuous variables, but may also be employed when the independent variable is categorical. We cannot simply choose values to probe the interaction as we would in the continuous variable case because of the nominal nature of the data (i.e., in the continuous case, one could analyze the data at high, moderate, and low levels assigning 1 standard deviation above the mean, at the mean, and at one standard deviation below the mean respectively). In our categorical case we would use a simple regression equation for each group to investigate the simple slopes. It is common practice to standardize or center variables to make the data more interpretable in simple slopes analysis; however, categorical variables should never be standardized or centered. This test can be used with all coding systems.


See also

*
Level of measurement Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scale ...
* List of analyses of categorical data *
Qualitative data Qualitative properties are properties that are observed and can generally not be measured with a numerical result, unlike Quantitative property, quantitative properties, which have numerical characteristics. Description Qualitative properties a ...
*
Statistical data type In statistics, data can have any of various ''types''. Statistical data types include categorical (e.g. country), directional ( angles or directions, e.g. wind measurements), count (a whole number of events), or real intervals (e.g. measures ...
* One hot encoding


References


Further reading

* Andersen, Erling B. 1980. ''Discrete Statistical Models with Social Science Applications''. North Holland, 1980. * * * Friendly, Michael.
Visualizing categorical data
'' SAS Institute, 2000. * * NIST/SEMATEK (2008
''Handbook of Statistical Methods''
{{Social surveys Statistical data types Categorical data