Overview
A carbon offset or carbon credit is a way of compensating for emissions ofHistory
In 1977, major amendments to the US Clean Air Act created one of the first tradable emission offset mechanisms, allowing permitted facilities to increase emissions in exchange for paying another company to reduce its emissions of the same pollutant by a greater amount. The 1990 amendments to that same law established the Acid Rain Trading Program, which introduced the concept of a cap and trade system, which allowed companies to buy and sell offsets created by other companies that invested in emission reduction projects subject to an overall limit on emissions. In the 1990s, regulatory frameworks for the US Clean Water Act enabled mitigation banking and wetlands offsetting, which set the procedural and conceptual precedent for carbon offsetting. In 1997, the original international compliance carbon markets emerged from the Kyoto Protocol, which established three mechanisms that enable countries or operators in developed countries to acquire offset credits. One mechanism was the Clean Development Mechanism (CDM), which expanded the concept of carbon emissions trading to a global scale, focusing on the major greenhouse gases that causeEconomics
The economics behind programs such as the Kyoto Protocol was that the marginal cost of reducing emissions would differ among countries. Studies suggested that the flexibility mechanisms could reduce the overall cost of meeting the targets., in Offset and credit programs have been identified as a way for countries to meet their NDC commitments and achieve the goals of the Paris agreement at a lower cost. They may also help close the emissions gap identified in annual UNEP reports. There is a diverse range of sources of supply and demand as well as trading frameworks that drive offset and credit markets. Demand for offsets and credits derives from a range of compliance obligations, arising from international agreements, national laws, as well as voluntary commitments that companies and governments have adopted. Voluntary carbon markets usually consist of private entities purchasing carbon offset credits to meet voluntary greenhouse gas reduction commitments. In some cases, non-covered participants in an ETS may purchase credits as an alternative to purchasing offsets in a voluntary market. These programs also have other positive externalities, or co-benefits, which include better air quality, increased biodiversity, and water and soil protection; community employment opportunities, energy access, and gender equality; and job creation, education opportunities, and technology transfer. Some certification programs have tools and research products to help quantify these benefits. Prices for offsets and credits vary widely, reflecting the uncertainty associated with verifying the indirect value of carbon offsets. At the same time, uncertainty has caused some companies to become more skeptical about buying offsets .Emissions trading systems
Emissions trading are now an important element of regulatory programs to control pollution, including GHG emissions. GHG emission trading programs exist at the sub-national, national, and international level. Under these programs, there is a cap on emissions. Sources of emissions have the flexibility to find and apply the lowest-cost methods for reducing pollution. A central authority or government body usually allocates or sells a limited number (a "cap") of permits. These permit a discharge of a specific quantity of a specific pollutant over a set time period. Polluters are required to hold permits in amounts equal to their emissions. Those that want to increase their emissions must buy permits from others willing to sell them. These programs have been applied to greenhouse gases for several reasons. Their warming effects are the same regardless of where they are emitted. The costs of reducing emissions vary widely by source. The cap ensures that the environmental goal is attained.Regulations and schemes
As of 2022, 68 carbon pricing programs were in place or scheduled to be created globally. International programs include the Clean Development Mechanism, Article 6 of the Paris Agreement, and CORSIA. National programs include ETS systems such as the European Union Emissions Trading System (EU-ETS) and the California Cap and Trade Program. Eligible credits in these programs may include credits that international or independent crediting systems have issued. There are also standards and crediting mechanisms that independent, nongovernmental entities such as Verra andKyoto Protocol
Under the Clean Development Mechanism, a developed country can sponsor a greenhouse gas reduction project in a developing country, where the costs of greenhouse gas reduction activities are usually much lower. The developed country receives credits for meeting its emission reduction targets known as Certified Emission Reductions (CERs), while the developing country receives capital investment and clean technology or beneficial change in land use. Under Joint Implementation, a developed country with relatively high domestic costs of emission reduction would set up a project in another developed country. Offset credits under this program are designated as Emission Reduction Units. The International Emissions Trading program enables countries to trade in the international carbon credit market to cover their shortfall inParis Agreement Article 6 mechanisms
Article 6 of the Paris Agreement continues to support offset and credit programs between countries, including CDM projects from the Kyoto Protocol. Programs now occur to help achieve emission reduction targets set out in each country's nationally determined contribution (NDC). The ITMO system requires "corresponding adjustments" to avoid double counting of emission reductions. Double-counting occurs if both the host country and purchasing country count the reduction towards their target. If the receiving country uses ITMOs towards its NDC, the host country must discount those reductions from its emissions budget by adding and reporting that higher total in its biennial reporting. Otherwise Article 6.2 gives countries a lot of flexibility in how they can create trading agreements. The supervisory board under Article 6.4 is responsible for approving methodologies, setting guidance, and implementing procedures. The preparation work for this is expected to last until the end of 2023. ER credits issued will fall by 2% to ensure that the program as a whole results in an overall Mitigation of Global Emissions. An additional 5% reduction of ERs will go to a fund to finance adaptation. Administrative fees for program management are still under discussion. CDM projects may transition to the Article 6.4 program subject to approval by the country hosting the project, and if the project meets the new rules, with certain exceptions for rules on methodologies. Projects can generally continue to use the same CDM methodologies through 2025. From 2026 on, they must meet all Article 6 requirements. Up to 2.8 billion credits could potentially become eligible for issuance under Article 6.4 if all CDM projects transition. Article 6 does not directly regulate the voluntary carbon markets. In principle, it is possible to issue and purchase carbon offsets without reference to Article 6. It is possible that a multi-tier system could emerge with different types of offsets and credits available for investors. Companies may be able to purchase 'adjusted credits' that eliminate the risk of double counting. These may be seen as more valuable if they support science-based targets and net-zero emissions. Other non-adjusted offsets and credits could support claims for other environmental or social indicators. They could also support emission reductions that are seen as less valuable in terms of these goals. Uncertainty remains around Article 6's effects on future voluntary carbon markets. There is also uncertainty about what investors could claim by purchasing various types of carbon credits.REDD+
REDD+ is a UNFCCC framework, largely addressed at tropical regions in developing countries, that is designed to compensate countries for not clearing or degrading their forests, or for enhancing forest carbon stocks. It aims to create financial value for carbon stored in forests, using the concept of results-based payments. REDD+ also promotes co-benefits from reducing deforestation such as biodiversity. It was introduced in its basic form at COP11 in 2005 and has grown into a broad policy initiative to address deforestation and forest degradation. In 2015, REDD+ was incorporated into Article 5 of the Paris Agreement. REDD+ initiatives typically compensate developing countries or their regional administrations for reducing their emissions from deforestation and forest degradation. It consists of several stages: One, achieving REDD+ readiness; two, formalizing an agreement for financing; three, measuring, reporting, and verifying results; and four, receiving results-based payments. Over 50 countries have national REDD+ initiatives. REDD+ is also taking place through provincial and district governments and at the local level through private landowners. As of 2020, there were over 400 ongoing REDD+ projects globally. Brazil and Colombia account for the largest amount of REDD+ project land area.CORSIA
The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) is a global, market-based program to reduce emissions from international aviation. It aims to allow credits and offsets for emissions that cannot be reduced by technology and operational improvements or sustainable aviation fuels. To ensure the environmental integrity of these offsets, the program has developed a list of eligible offsets that can be used. Operating principles are similar to those under existing trading mechanisms and carbon offset certification standards. CORSIA has applied to international aviation since January 2019. At that point all airlines had been required to report their CO2 emissions on an annual basis. International flights must undertake offsetting under CORSIA since January 2021.Markets
Compliance market credits account for most of the offset and credit market today. Trading on voluntary carbon markets was 300 MtCO2e in 2021. By comparison, the compliance carbon market trading volume was 12 GtCO2e, and globalVoluntary carbon markets and certification programs
Voluntary carbon markets (VCM) are largely unregulated markets where carbon offsets are traded by corporations, individuals and organizations that are under no legal obligation to make emission cuts. In voluntary carbon markets, companies or individuals use carbon offsets to meet the goals they set themselves for reducing emissions. Credits are issued under independent crediting standards. Some entities also purchase them under international or domestic crediting mechanisms. National and subnational programs have been increasing in popularity. Many different groups exist within the voluntary carbon market, including developers, brokers, auditors, and buyers. Certification programs for VCMs establish accounting standards, project eligibility requirements, and monitoring, reporting and verification (MRV) procedures for credit and offset projects. They include the Verified Carbon Standard issued by Verra, theDetermining value
In 2022 voluntary carbon market (VCM) prices ranged from $8 to $30 per tonne of CO2e for the most common types of offset projects. Several factors can affect these prices. The costs of developing a project are a significant factor. Those tied to projects that can sequester carbon have recently been selling at a premium compared to other projects such as renewable energy or energy efficiency. Projects that sequester carbon are also called Nature-Based Solutions. Projects with additional social and environmental benefits can command a higher price. This reflects the value of the co-benefits and the perceived value of association with these projects. Credits from a reputable organization may command a higher price. Some credits located in developed countries may be priced higher. One reason could be that companies prefer to back projects closer to their business sites. Conversely, carbon credits with older vintages tend to be valued lower on the market. Prices on the compliance market are generally higher. They vary based on geography, with EU and UK ETS credits trading at higher prices than those in the US in 2022. Lower prices on the VCM are in part due to an excess of supply in relation to demand. Some types of offsets are able to be created at very low costs under present standards. Without this surplus, current VCM prices could be at least $10/tCO2e higher. Some pricing forecasts predict VCM prices could increase to as much as $47–$210 per tonne by 2050. There could be an even higher spike in the short term in certain scenarios. A major factor in future price models is the extent to which programs that support more permanent removals can influence future global climate policy. This could limit the supply of approvable offsets, and thereby raise prices. Demand for VCM offsets is expected to increase five to ten-fold over the next decade as more companies adopt Net Zero climate commitments. This could benefit both markets and progress on reducing GHG emissions. If carbon offset prices remain significantly below these forecast levels, companies could be open to criticisms of greenwashing. This is because some might claim credit for emission reduction projects that would have been undertaken anyway. At prices of $100/tCO2e, a variety of carbon removal technologies could deliver around 2 GtCO2e per year of annual emission reductions between now and 2050. These technologies include reducing deforestation, forest restoration, CCS, BECCs and renewables in least developed countries. In addition, as the cost of using offsets and credits rises, investments in reducing supply chain emissions will become more attractive.Verified Carbon Standard by Verra
Verra was developed in 2005. It is a widely used voluntary carbon standard, which also offers specific methodologies for REDD+ projects. As of 2020, there had been over 1,500 certified VCS projects covering energy, transport, waste, forestry, and other sectors. In 2021, Verra issued 300 MtCO2e worth of offset credits for 110 projects. Verra is the program of choice for most of the forest credits in the voluntary market, and almost all REDD+ projects.Gold Standard
TheTypes of offset projects
A variety of projects can be used to reduce GHG emissions and thus to generate carbon offsets and credits. These can include land use improvement, methane capture, biomass sequestration,Renewable energy
Renewable energy projects can include hydroelectric, wind, photovoltaic solar, solar hot water, biomass power, and heat production. These types of projects help societies move from electricity and heating based on fossil fuels towards forms of energy that are less carbon-intensive. However, they may not qualify as offset projects. This is because it is difficult or impossible to determine their additionality. They usually generate revenue. And they usually involve subsidies or other complex financial arrangements. This can make them ineligible under many offset and credit programs.Methane collection and combustion
Methane is a potent greenhouse gas. It is most often emitted from landfills, livestock, and from coal mining. Methane projects can produce carbon offsets through the capture of methane for energy production. Examples include the combustion or containment ofEnergy efficiency
Carbon offsets that fund renewable energy projects help lower the carbon intensity of energy ''supply.'' Energy conservation projects seek to reduce the overall ''demand'' for energy. Carbon offsets in this category fund projects of three main types. Cogeneration plants generate both electricity and heat from the same power source. This improves upon the energy efficiency of most power plants. That is because these plants waste the energy generated as heat.Destruction of industrial pollutants
Industrial pollutants such as hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) have a much greater potential for global warming than carbon dioxide by volume. It is easy to capture and destroy these pollutants at their source. So they present a large low-cost source of carbon offsets. As a category, HFCs, PFCs, and N2O reductions represent 71 percent of offsets issued under the CDM. Since many of these are now banned by an amendment to the Montreal Protocol, they are often no longer eligible for offsets or credits.Land use, land-use change and forestry
Land use, land-use change and forestry have the collective label LULUCF. LULUCF projects focus on naturalProcesses
Creation
An offset project is designed by project developers, financed by investors, validated by an independent verifier, and registered with a carbon offset program. Official registration indicates that a program has approved the project and that the project is eligible to start generating carbon offset credits once it starts. Most carbon offset programs have a library of approved methodologies covering a range of project types. After a project has begun, programs will often verify it periodically to determine the quantity of emission reductions generated. The length of time between verifications can vary, but is typically one year. After a program approves verification reports, it issues carbon offset credits, which are deposited in the project developer's account in a registry system administered by the offset program.Criteria for assessing quality
Criteria for assessing the quality of offsets and credits usually cover the following areas: * Baseline and Measurement * Additionality * Leakage * Permanence * Double counting * Co-benefitsApproaches for increasing integrity
Besides the certification programs mentioned above, industry groups have been working since the 2000s to promote the quality of these projects. The International Carbon Reduction and Offset Alliance (ICROA) was founded in 2008. It promotesLimitations and drawbacks
The use of offsets and credits faces a variety of criticisms. Some argue that they promote a "business-as-usual" mindset, allowing companies to use carbon offsetting to avoid making larger changes to reduce carbon emissions at source. Research from The Australia Institute has suggested that at least 25% of carbon offsets may lack integrity, describing them as "hot air." Additionally, some reports have raised concerns that carbon offsets could be used to justify the continuation or expansion of fossil fuel projects, potentially delaying direct efforts to reduce emissions. Using projects in this way is called " greenwashing".Oversight issues
Several certification standards exist, with different ways of measuring emissions baseline, reductions, additionality, and other key criteria. However, no single standard governs the industry. Some offset providers have faced criticism that their carbon reduction claims are exaggerated or misleading. For example, carbon credits issued by the California Air Resources Board were found to use a formula that established fixed boundaries around forest regions. This created simplified, regional averages for the carbon stored in a wide mix of tree species. Some experts have estimated that California's cap and trade program has generated between 20 million and 39 million forestry credits that do not achieve real climate benefits. This amounts to nearly one in three credits issued through that program. The Australia Institute shares that while Australia’s carbon offset system appears to be regulated, it lacks independent verification and transparency. The government doesn’t release the data that would allow independent scrutiny of offset projects.Without reliable data or oversight, there is no way to verify the effectiveness of these projects, which can lead to misleading claims and potentially increase emissions, especially when offsets are used to justify new fossil fuel projects. Determining additionality can be difficult. This may present risks for buyers of offsets or credits. Carbon projects that yield strong financial returns even in the absence of revenue from carbon credits are usually not considered additional. Another example is projects that are compelled by regulations. Projects representing common practice in an industry are also usually not considered additional. A full determination of additionality requires a careful investigation of proposed carbon offset projects. Offsets provide a revenue stream for the reduction of some types of emissions, so they can lead to perverse incentives. They may provide incentives to emit more, so that emitting entities can get credit for reducing emissions from an artificially high baseline. Regulatory agencies could address these situations. This could involve setting specific standards for verifiability, uniqueness, and transparency.Concerns with forestry projects
Forestry projects have faced increasing criticism over their integrity as offset or credit programs. A number of news stories from 2021 to 2023 criticized nature-based carbon offsets, the REDD+ program, and certification organizations. In one case it was estimated that around 90% of rainforest offset credits of the Verified Carbon Standard are likely to be "phantom credits". Tree planting projects in particular have been problematic. Critics point to a number of concerns. Trees reach maturity over a course of many decades. It is difficult to guarantee how long the forest will last. It may suffer clearing,Lack of impact on the company’s own operations
Offsetting, while a widely used tool for addressing greenhouse gas emissions, has inherent limitations in directly reduce carbon emissions at the source. By purchasing carbon credits from external projects, companies invest in external projects to counterbalance emissions, often through reforestation or renewable energy initiatives. However, offsetting has faced significant scrutiny and exploitation. We see many cases of large companies purchasing carbon credits to offset their emissions without taking meaningful action to reduce their own emissions directly.See also
* African carbon market * Cap and dividend * Cap and Share * Carbon Border Adjustment Mechanism * Carbon tax * Chinese national carbon trading schemeExternal links
References
Sources
* (pb: ). * {{DEFAULTSORT:Carbon Offset Carbon finance Renewable energy Greenhouse gas emissions Greenwashing