HOME

TheInfoList



OR:

A capping enzyme (CE) is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that
catalyzes Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
the attachment of the 5' cap to
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
molecules that are in the process of being synthesized in the
cell nucleus The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryote, eukaryotic cell (biology), cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have #Anucleated_cells, ...
during the first stages of
gene expression Gene expression is the process (including its Regulation of gene expression, regulation) by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, ...
. The addition of the cap occurs co-transcriptionally, after the growing
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
molecule contains as little as 25
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s. The enzymatic reaction is catalyzed specifically by the
phosphorylated In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writt ...
carboxyl-terminal domain (CTD) of
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a Protein complex, multiprotein complex that Transcription (biology), transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNA pol ...
. The 5' cap is therefore specific to RNAs synthesized by this polymerase rather than those synthesized by
RNA polymerase I RNA polymerase 1 (also known as Pol I) is, in higher eukaryotes, the polymerase that only transcribes ribosomal RNA (but not 5S rRNA, which is synthesized by RNA polymerase III), a type of RNA that accounts for over 50% of the total RNA synthesiz ...
or
RNA polymerase III In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose ex ...
.
Pre-mRNA A primary transcript is the single-stranded ribonucleic acid (RNA) product synthesized by Transcription (genetics), transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs. The primary transcript ...
undergoes a series of modifications - 5' capping, splicing and 3'
polyadenylation Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In euka ...
before becoming mature mRNA that exits the nucleus to be translated into functional proteins and capping of the 5' end is the first of these modifications. Three enzymes, RNA triphosphatase, guanylyltransferase (or CE), and methyltransferase are involved in the addition of the methylated 5' cap to the mRNA.


Formation of the cap

Capping is a three-step process that utilizes the
enzymes An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as pro ...
RNA triphosphatase, guanylyltransferase, and methyltransferase. Through a series of three steps, the cap is added to the first nucleotide's 5' hydroxyl group of the growing
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
strand while transcription is still occurring. First, RNA 5' triphosphatase hydrolyzes the 5' triphosphate group to make diphosphate-RNA. Then, the addition of GMP by guanylyltransferase produces the
guanosine Guanosine (symbol G or Guo) is a purine nucleoside comprising guanine attached to a ribose ( ribofuranose) ring via a β-N9- glycosidic bond. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosp ...
cap. Last, RNA methyltransferase transfers a
methyl group In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula (whereas normal methane has the formula ). In formulas, the group is often abbreviated a ...
to the guanosine cap to yield 7-methylguanosine cap that is attached to the 5' end of the transcript. These three enzymes, collectively called the capping enzymes, are only able to catalyze their respective reactions when attached to RNA polymerase II, an enzyme necessary for the transcription of DNA into pre-mRNA. When this complex of RNA polymerase II and the capping enzymes is achieved, the capping enzymes are able to add the cap to the mRNA while it is produced by RNA polymerase II.


Function

Eukaryotic RNA must undergo a series of modifications in order to be exported from the nucleus and successfully translated into function proteins, many of which are dependent on mRNA capping, the first mRNA modification to take place. 5' capping is essential for mRNA stability, enhancing mRNA processing, mRNA export and translation. After successful capping, an additional phosphorylation event initiates the recruitment of machinery necessary for RNA splicing, a process by which introns are removed to produce a mature mRNA. The addition of the cap onto mRNA confers protection to the transcript from exonucleases that degrade unprotected RNA and assist in the nuclear export transport process so that the mRNA can be translated to form proteins. The function of the 5' cap is essential to the ultimate expression of the RNA.


Structure

The capping enzyme is part of the covalent nucleotidyl transferases superfamily, which also includes DNA ligases and RNA ligases. The enzymes of this superfamily share the following similarities: * Conserved regions known as motifs I, II, III, IIIa, IV, V and VI, which are arranged in the same order and similar spacing * A
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group ( ...
containing motif KxDG (motif I) * A
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
lysyl-NMP intermediate The capping enzyme is composed of two domains, a nucleotidyl transferase (NTase) domain and a C-terminal oligonucleotide binding (OB) domain. The NTase domain, conserved in capping enzymes, DNA and RNA ligases, is made up 5 motifs, I, III, IIIa, IV and V. Motif I or KxDG is the active site where the covalent (lysyl)-N-GMP intermediate is formed. Both the NTase and OB domains undergo conformational changes that assist in the capping reaction. Capping enzymes are found in the nucleus of
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
cells. Depending on the organism, the capping enzyme is either a monofunctional or bifunctional
polypeptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty ...
. The guanylyltransferases (Ceg1) of ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'' is encoded by the ''CEG1'' gene and is composed of 459 amino acids (53-kD). The RNA triphosphatase (Cet1) is a separate 549 amino acid
polypeptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty ...
(80-kD), encoded by the ''CET1'' gene. The human capping enzyme is an example of a bifunctional polypeptide, which has both triphosphatase (N-terminal) and guanylyltransferase (C-terminal) domains. The human mRNA guanylyltransferase domain of the capping enzyme is composed of seven
helices A helix (; ) is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smoothness (mathematics), smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as ...
and fifteen β strands that are grouped into three, five and seven strands, arranged as antiparallel β sheets. The enzyme structure has three sub-domains referred to hinge, base and lid. The GTP binding site is located between the hinge and base domain. The lid domain determines the conformation of the
active site In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the ''binding s ...
cleft, which consists of the GTP binding site, phosphoamide linking lysine and surrounding residues. The guanylyltransferase domain is linked to the triphosphatase domain via a 25 amino acid flexible loop structure.


Impact of the enzyme's activity

Splicing is dependent on the presence of the 7-methylguanosine cap. A defect in splicing can occur as a result of mutation(s) in the guanylyltransferase, which can inhibit enzyme activity, preventing the formation of the cap. However the severity of the effect is dependent on the guanylyltransferase mutation. Furthermore, the guanylyltransferase relieves transcriptional repression mediated by NELF. NELF together with DSIF prevents transcription elongation. Thus, mutations in the enzyme can affect transcription elongation.


See also

*
RNA splicing RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
* mRNA (guanine-N7-)-methyltransferase *
Post-transcriptional modification Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, f ...
*
Translation (biology) In biology, translation is the process in living Cell (biology), cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotide ...
*
Ribosome Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
* Transcription *
RNA Polymerase II RNA polymerase II (RNAP II and Pol II) is a Protein complex, multiprotein complex that Transcription (biology), transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNA pol ...
*
Eukaryotic transcription Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Un ...


References

{{reflist, 32em Gene expression Enzymes Molecular evolution