HOME

TheInfoList



OR:

In mathematics, a Cantor cube is a
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two ...
of the form ''A'' for some index set ''A''. Its algebraic and topological structures are the group direct product and
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seem ...
over the
cyclic group of order 2 In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binar ...
(which is itself given the
discrete topology In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are ''isolated'' from each other in a certain sense. The discrete topology is the finest t ...
). If ''A'' is a countably infinite set, the corresponding Cantor cube is a
Cantor space In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "t ...
. Cantor cubes are special among
compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural ge ...
s because every compact group is a continuous image of one, although usually not a homomorphic image. (The literature can be unclear, so for safety, assume all spaces are Hausdorff.) Topologically, any Cantor cube is: *
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
; *
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
; * zero-dimensional; *AE(0), an absolute extensor for compact zero-dimensional spaces. (Every map from a closed subset of such a space into a Cantor cube extends to the whole space.) By a theorem of Schepin, these four properties characterize Cantor cubes; any space satisfying the properties is homeomorphic to a Cantor cube. In fact, every AE(0) space is the continuous
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
of a Cantor cube, and with some effort one can prove that every
compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural ge ...
is AE(0). It follows that every zero-dimensional compact group is homeomorphic to a Cantor cube, and every compact group is a continuous image of a Cantor cube.


References

* *{{springer, author=A.A. Mal'tsev, title=Colon, id=C/c023230 Topological groups Georg Cantor