Description
The CCEMG launcher (version III) was a series augmented railgun capable of firing three five-roundProperties
The following tables display the parameters for the CCEMG launcher:Development
The CCEMG launcher was developed in the early 1990s as part of the Cannon-Caliber Electromagnetic Gun (CCEMG) Program to demonstrate the viability of an electromagnetic multi-shot weapon. The CCEMG program was sponsored by the U.S. Army Armament Research, Development, and Engineering Center and the U.S. Marine Corps. As part of the project, the Center for Electromechanics at the University of Texas at Austin (UT-CEM) was commissioned to construct the launcher as well as provide the pulsed power supply and armature development, while the Kaman Science Corporation was tasked with developing the Integrated Launch Package (ILP) for the railgun. In order to design the CCEMG launcher, an optimization algorithm called EXCaliber (short for Electromagnetic eXperimental Caliber) was developed to take into account details surrounding armature and barrel structural and thermal design requirements as well as analyze the impact of different launch environment conditions on power supply size and mass. The equations governing armature and barrel design were coded into a FORTRAN program structure, and the thermal and structural design constraints for both the armature and barrel were interdependently modeled. EXCaliber was used to calculate the minimum armature and barrel bass as well as the minimum required gun breech energy demands. Based on these calculations, the optimization algorithm determined that the minimum breech energy demand occurred at 1.85 km/s launch velocity and that the breech energy demand for one-turn (simple rail) designs increased at a higher rate than two- or three-turn (augmented) designs as launch velocity increased. The results from EXCaliber also concluded that a rectangular bore cross-section provided a higher launch efficiency than a round-bore design. In designing the CCEMG launcher, UT-CEM and the Kaman Science Corporation were given a specific set of requirements that the launcher had to meet. (See table below) In order to fulfill these target specifications, several design choices were made to the CCEMG to optimize its performance. The CCEMG armature, which had to carry the accelerating current and distribute the accelerating force to the sub-projectile, was designed to be discarded after launch and made contact with the rail at two distinct places. The launch package was also calculated by EXCaliber to have a total mass of 180 grams, which was evenly split between the armature and the sub-projectile. Other design choices included the incorporation of ceramic sidewalls, internal preloading, and chromium copper rails. For the ILP, the Kaman Science Corporation designed the launch package to operate at a launch velocity of 1,850 m/s to meet the penetration at range requirement, resulting in a peak axial acceleration of 2.06 x 106 m/s2 or 210,000 g's. The pulsed power supply (PPS) for the CCEMG launcher was composed of eight banks, each of which was nominally 200 kJ at a rated maximum charge voltage of 10 kV. As the CCEMG launcher's power supply, the air-core compulsator weighed 2,045 kg and stored 40 MJ at 12,000 rpm. At the conclusion of the CCEMG program's development process, two single-shot railguns (known as CCEMG launchers IIA and IIB) and a water-glycol cooled, rapid-fire railgun (CCEMG launcher III) were built. The only listed difference between launchers IIA and IIB from launcher III was that launcher III possessed coolant passages to cool the rail sets between salvos and a deceleration guide required for autoloading.Tests
Launcher IIA testing
Preliminary testing of the CCEMG launcher IIA took place at UT-CEM and at the U.S. Army Research Laboratory (ARL) from 1994 to 1995. The primary purpose of the experimental test was to verify the performance of the single-shot launcher and the ILP to determine whether they met the CCEMG system requirements. Improvements and modifications to the launcher and ILP were made during various phases of testing.CEM-UT testing
The CCEMG launcher IIA fired a total of 11 shots at UT-CEM. The launcher was powered with a 1 MJ/pulse iron core compulsator, and the shots were fired with a gradual increase in system energy. The deviation of the bore centerline was measured before and after flatjack pressurization prior to electrical testing in order to determine whether the flatjacks had an effect on bore straightness, which indicated the integrity of the adhesive bonds between the rails and the sidewall as well as the symmetry of the structural preload. The bore straightness changed very little even after the 11th shot, deviating from a straight line by at most 0.2 mm, suggesting that either a uniform amount of axial strain was being applied to the structure or that the flatjack axial strains had minimal effect on the structure. Launcher IIA demonstrated its highest performance on shot 7, which had a peak current of 552 kA. During the last shot, testers found an insulation flaw within the launcher. As a result, modifications were made to the electrical insulation design of launchers IIB and III, such as the thickening of theARL testing
The ARL testing of the CCEMG launcher IIA took place at the EM Facility at the Transonic Range in Aberdeen Proving Ground (APG), MD. The launcher was powered by a 1.55 MJ capacitor-based pulsed power supply composed of eight banks, each of which could be charged to different initial voltages and be triggered independently in time. Throughout testing, muzzle velocity was measured using various techniques, such as by recording the time rate of change of the armature's in-bore induction field. Other methods included the use of a smear camera, flash x-ray, and radar.Launcher III testing
The performance test of the CCEMG launcher III was conducted by CEM-UT in 1996. Despite being a multishot system, launcher III underwent only single-shot testing during this evaluation for the purposes of verifying the accuracy of the computer simulation, establishing the reliability of the control system, and determining the necessary parameters for the pulse power system. Multishot testing took place with incremental increases in system energy in subsequent tests. A total of six single shots were fired for this trial, of which the sixth shot demonstrated the highest muzzle energy with 279 kJ. The results showed no damage to the rail or sidewall of the launcher with the exception of minor arc erosion caused by the last shot.Follow-up experiments
In 1999, researchers at ARL conducted a series of experiments on the CCEMG launcher at the Transonic Experimental Facility at Aberdeen to investigate the effects ofReferences
{{reflist Military technology Electromagnetic components Railguns