HOME

TheInfoList



OR:

A calcium spark is the microscopic release of calcium ( Ca2+) from a store known as the sarcoplasmic reticulum (SR), located within muscle cells. This release occurs through an
ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by Gating (electrophysiol ...
within the
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
of the SR, known as a ryanodine receptor (RyR), which opens upon activation. This process is important as it helps to maintain Ca2+ concentration within the cell. It also initiates
muscle contraction Muscle contraction is the activation of Tension (physics), tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in musc ...
in
skeletal A skeleton is the structural frame that supports the body of most animals. There are several types of skeletons, including the exoskeleton, which is a rigid outer shell that holds up an organism's shape; the endoskeleton, a rigid internal fram ...
and
cardiac muscle Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall o ...
s and
muscle relaxation Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as ...
in smooth muscles. Ca2+ sparks are important in physiology as they show how Ca2+ can be used at a subcellular level, to signal both local changes, known as local control, as well as whole cell changes.


Activation

As mentioned above, Ca2+ sparks depend on the opening of ryanodine receptors, of which there are three types: * Type 1 – found mainly in skeletal muscle * Type 2 – found mainly in the heart * Type 3 – found mainly in the brain Opening of the channel allows Ca2+ to pass from the SR, into the cell. This increases the local Ca2+ concentration around the RyR, by a factor of 10. Calcium sparks can either be evoked or spontaneous, as described below.


Evoked

Electrical impulses, known as
action potentials An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. ...
, travel along the cell membrane (sarcolemma) of muscle cells. Located in the sarcolemma of smooth muscle cells are receptors, called dihydropyridine receptors (DHPR). In skeletal and cardiac muscle cells, however, these receptors are located within structures known as T-tubules, that are extensions of the plasma membrane penetrating deep into the cell (see figure 1). These DHPRs are located directly opposite to the ryanodine receptors, located on the sarcoplasmic reticulum and activation, by the action potential causes the DHPRs to change shape. In
cardiac The heart is a muscular organ found in humans and other animals. This organ pumps blood through the blood vessels. The heart and blood vessels together make the circulatory system. The pumped blood carries oxygen and nutrients to the tissu ...
and
smooth muscle Smooth muscle is one of the three major types of vertebrate muscle tissue, the others being skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non- striated, so-called bec ...
, activation of the DHPR results in it forming an
ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by Gating (electrophysiol ...
. This allows Ca2+ to pass into the cell, increasing the local Ca2+ concentration, around the RyR. When four Ca2+ molecules bind to the RyR, it opens, resulting in a larger release of Ca2+, from the SR . This process, of using Ca2+ to activate release of Ca2+ from the SR is known as calcium-induced calcium release. However, in skeletal muscle the DHPR touches the RyR. Therefore, the shape change of the DHPR activates the RyR directly, without the need for Ca2+ to flood into the cell first. This causes the RyR to open, allowing Ca2+ to be released from the SR.


Spontaneous

Ca2+ sparks can also occur in cells at rest (i.e. cells that have not been stimulated by an action potential). This occurs roughly 100 times every second in each cell and is a result of Ca2+ concentration being too high. An increase in Ca2+ within the SR is thought to bind to Ca2+ sensitive sites on the inside of the RyR causing the channel to open. As well as this, a protein called calsequestrin (found within the SR) detaches from the RyR, when calcium concentration is too high, again allowing the channel to open (see sarcoplasmic reticulum for more details). Similarly, a decrease in Ca2+ concentration within the SR has also proven to lower RyR sensitivity. This is thought to be due to the calsequestrin binding more strongly to the RyR, preventing it from opening and decreasing the likelihood of a spontaneous spark.


Calcium after release

There are roughly 10,000 clusters of ryanodine receptors within a single cardiac cell, with each cluster containing around 100 ryanodine receptors. During a single spontaneous spark, when Ca2+ is released from the SR, the Ca2+ diffuses throughout the cell. As the RyRs in the heart are activated by Ca2+, the movement of the Ca2+ released during a spontaneous spark, can activate other neighbouring RyRs within the same cluster. However, there usually isn't enough Ca2+ present in a single spark to reach a neighbouring cluster of
receptor Receptor may refer to: * Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and respond ...
s. The calcium can, however, signal back to the DHPR causing it to close and preventing further influx of calcium. This is known as
negative feedback Negative feedback (or balancing feedback) occurs when some function (Mathematics), function of the output of a system, process, or mechanism is feedback, fed back in a manner that tends to reduce the fluctuations in the output, whether caused ...
. An increase in Ca2+ concentration within the cell or the production of a larger spark, can lead to a large enough calcium released that the neighbouring cluster can be activated by the first. This is known as spark-induced spark activation and can lead to a Ca2+ wave of calcium release spreading across the cell. During evoked Ca2+ sparks, all clusters of
ryanodine receptor Ryanodine receptors (RyR) make up a class of high-conductance, intracellular calcium channels present in various forms, such as animal muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissu ...
s, throughout the cell are activated at almost exactly the same time. This produces an increase in Ca2+ concentration across the whole cell (not just locally) and is known as a whole cell Ca2+ transient. This Ca2+ then binds to a protein, called
troponin Troponin, or the troponin complex, is a complex of three regulatory proteins (troponin C, troponin I, and troponin T) that are integral to muscle contraction in skeletal muscle and cardiac muscle, but not smooth muscle. Measurements of cardiac-spe ...
, initiating contraction, through a group of proteins known as myofilaments. In
smooth muscle Smooth muscle is one of the three major types of vertebrate muscle tissue, the others being skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non- striated, so-called bec ...
cells, the Ca2+ released during a spark is used for muscle relaxation. This is because, the Ca2+ that enters the cell via the DHPR in response to the
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
, stimulates both muscle contraction and calcium release from the SR. The Ca2+ released during the spark, then activates two other
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ...
on the membrane. One channel allows potassium ions to exit the cell, whereas the other allows chloride ions to leave the cell. The result of this movement of
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
, is that the membrane voltage becomes more negative. This deactivates the DHPR (which was activated by the positive membrane potential produced by the action potential), causing it to close and stopping the flow of Ca2+into the cell, leading to relaxation.


Termination

The mechanism by which SR Ca2+ release terminates is still not fully understood. Current main
theories A theory is a systematic and rational form of abstract thinking about a phenomenon, or the conclusions derived from such thinking. It involves contemplative and logical reasoning, often supported by processes such as observation, experimentation, ...
are outlined below:


Local depletion of SR Ca2+

This theory suggests that during a calcium spark, as calcium flows out of the SR, the concentration of Ca2+ within the SR becomes too low. However, this was not thought to be the case for spontaneous sparks as the total release during a Ca2+ spark is small compared to total SR Ca2+ content and researchers have produced sparks lasting longer than 200 milliseconds, therefore showing that there is still enough Ca2+ left within the SR after a 'normal' (200ms) spark. However local depletion in the junctional SR may be much larger than previously thought (see ). During the activation of a large number of ryanodine receptors however, as is the case during electrically evoked Ca2+ release , the entire SR is about 50% depleted of Ca2+ and this mechanism will play an important role in repriming of release.


Stochastic attrition

Despite the complicated name, this idea simply suggests that all ryanodine receptors in a cluster, and the associated dihydropyridine receptors happen to randomly close at the same time. This would not only prevent calcium release from the SR, but it would also stop the stimulus for calcium release (i.e. the flow of calcium through the DHPR). However, due to the large numbers of RyRs and DHPRs in a single cell, this theory seems to be unrealistic, as there is a very small probability that they would all close together at exactly the same time.


Inactivation/adaptation

This theory suggests that after activation of the RyR and the subsequent release of Ca2+, the channel closes briefly to recover. During this time, either the channel cannot be reopened, even if calcium is present (i.e. the RyR is inactivated) or the channel can be reopened, however more calcium is required to activate it than usual (i.e. the RyR is in an adaptation phase). This would mean that one-by-one the RyRs would close, thus ending the spark.


Sticky cluster theory

This theory suggests that the above three theories all play a role in preventing calcium release.Sobie, E.A., Dilly, K.W., Cruz, J. dos S., Lederer, J.W. and Jafri, S.M. (2002) 'Termination of cardiac ca(2+) sparks: An investigative mathematical model of calcium-induced calcium release', 83(1)


Discovery

Spontaneous Ca2+ sparks were discovered in
cardiac muscle cell Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the Heart#Wa ...
s, of rats, in 1992 by Peace Cheng and Mark B. Cannell in Jon Lederer's laboratory at the University of Maryland, Baltimore, U.S.A. Initially the idea was rejected by the scientific journal,
Nature Nature is an inherent character or constitution, particularly of the Ecosphere (planetary), ecosphere or the universe as a whole. In this general sense nature refers to the Scientific law, laws, elements and phenomenon, phenomena of the physic ...
, who believed that the sparks were only present under laboratory conditions (i.e. they were artifacts), and so wouldn't occur naturally within the body. However they were quickly recognised as being of fundamental importance to muscle
physiology Physiology (; ) is the science, scientific study of function (biology), functions and mechanism (biology), mechanisms in a life, living system. As a branches of science, subdiscipline of biology, physiology focuses on how organisms, organ syst ...
, playing a huge role in excitation-contraction coupling. The discovery was made possible due to improvements in confocal microscopes. This allowed for the detection of the release of Ca2+, which were highlighted using a substance known as fluo-3, which caused the Ca2+ to glow. Ca2+ “sparks” were so called because of the spontaneous, localised nature of the Ca2+ release as well as the fact that they are the initiation event of excitation-contraction coupling.


Detection and analysis

Because of the importance of Ca2+ sparks in explaining the gating properties of
ryanodine receptor Ryanodine receptors (RyR) make up a class of high-conductance, intracellular calcium channels present in various forms, such as animal muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissu ...
s in situ (within the body), many studies have focused on improving their detectability in the hope that by accurately and reliably detecting all Ca2+ spark events, their true properties can finally help us to answer the unsolved mystery of spark termination.


See also

* Calcium-induced calcium release *
Confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast (vision), contrast of a micrograph by me ...
*
Ryanodine receptor Ryanodine receptors (RyR) make up a class of high-conductance, intracellular calcium channels present in various forms, such as animal muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissu ...


References

{{Reflist


External links

Software
SparkMaster - Automated Ca2+ Spark Analysis with ImageJ
- Free software for Ca2+ spark analysis in confocal linescan images Cell biology