In
particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of
C-symmetry
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-sy ...
(
charge conjugation
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C- ...
symmetry) and
P-symmetry
In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' Three-dimensional space, spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial co ...
(
parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its
antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
(C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry).
CP violation is only observed in the
weak interaction
In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
. The discovery of CP violation in 1964 in the decays of neutral
kaon
In particle physics, a kaon, also called a K meson and denoted , is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark ...
s resulted in the
Nobel Prize in Physics
The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
in 1980 for its discoverers
James Cronin
James Watson Cronin (September 29, 1931 – August 25, 2016) was an American particle physicist.
Cronin and co-researcher Val Logsdon Fitch were awarded the 1980 Nobel Prize in Physics for a 1964 experiment that proved that certain subatomic ...
and
Val Fitch. CP violation was subsequently discovered in many other
meson
In particle physics, a meson () is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, the ...
decays. In 2025, the
LHCb experiment discovered CP violation in baryons.
There is some evidence CP violation may occur in neutrino interactions.
It is important to the
matter-antimatter asymmetry problem, the
strong CP problem, and in the study of weak interactions in particle physics. Under the
CPT theorem, every CP violation is also a time-symmetry violation.
Overview
Until the 1950s, parity conservation was believed to be one of the fundamental geometric
conservation laws (along with
conservation of energy
The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
and
conservation of momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
). After the discovery of
parity violation
In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point ref ...
in 1956, CP-symmetry was proposed to restore order. However, while the
strong interaction
In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
and
electromagnetic interaction are experimentally found to be invariant under the combined CP transformation operation, further experiments showed that this symmetry is slightly violated during certain types of
weak decay.
Only a weaker version of the symmetry could be preserved by physical phenomena, which was
CPT symmetry. Besides C and P, there is a third operation, time reversal T, which corresponds to reversal of motion. Invariance under time reversal implies that whenever a motion is allowed by the laws of physics, the reversed motion is also an allowed one and occurs at the same rate forwards and backwards.
The combination of CPT is thought to constitute an exact symmetry of all types of fundamental interactions. Because of the long-held CPT symmetry theorem, provided that it is valid, a violation of the CP-symmetry is equivalent to a violation of the T-symmetry. In this theorem, regarded as one of the basic principles of
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, charge conjugation, parity, and time reversal are applied together. Direct observation of the
time reversal symmetry violation without any assumption of CPT theorem was done in 1998 by two groups,
CPLEAR and KTeV collaborations, at
CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
and
Fermilab
Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illinois, near Chicago, is a United States Department of Energy United States Department of Energy National Labs, national laboratory specializing in high-energy particle phys ...
, respectively. As early as 1970, Klaus Schubert observed T violation independent of assuming CPT symmetry by using the Bell–Steinberger unitarity relation.
History
P-symmetry
The idea behind
parity symmetry was that the equations of particle physics are invariant under mirror inversion. This led to the prediction that the mirror image of a reaction (such as a
chemical reaction
A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
or
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
) occurs at the same rate as the original reaction. However, in 1956 a careful critical review of the existing experimental data by theoretical physicists
Tsung-Dao Lee and
Chen-Ning Yang revealed that while parity conservation had been verified in decays by the strong or electromagnetic interactions, it was untested in the weak interaction. They proposed several possible direct experimental tests.
The first test based on
beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
of
cobalt-60
Cobalt-60 (Co) is a synthetic radioactive isotope of cobalt with a half-life of 5.2714 years. It is produced artificially in nuclear reactors. Deliberate industrial production depends on neutron activation of bulk samples of the monoisotop ...
nuclei was carried out in 1956 by a group led by
Chien-Shiung Wu, and demonstrated conclusively that weak interactions violate the P-symmetry or, as the analogy goes, some reactions did not occur as often as their mirror image. However,
parity symmetry still appears to be valid for all reactions involving
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
and
strong interaction
In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
s.
CP-symmetry
Overall, the symmetry of a
quantum mechanical system can be restored if another approximate symmetry ''S'' can be found such that the combined symmetry ''PS'' remains unbroken. This rather subtle point about the structure of
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
was realized shortly after the discovery of ''P'' violation, and it was proposed that charge conjugation, ''C'', which transforms a particle into its
antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
, was the suitable symmetry to restore order.
In 1956
Reinhard Oehme in a letter to Chen-Ning Yang and shortly after,
Boris L. Ioffe,
Lev Okun and A. P. Rudik showed that the parity violation meant that charge conjugation invariance must also be violated in weak decays.
Charge violation was confirmed in the
Wu experiment and in experiments performed by
Valentine Telegdi and
Jerome Friedman and
Garwin and
Lederman who observed parity non-conservation in pion and muon decay and found that C is also violated. Charge violation was more explicitly shown in experiments done by
John Riley Holt at the
University of Liverpool
The University of Liverpool (abbreviated UOL) is a Public university, public research university in Liverpool, England. Founded in 1881 as University College Liverpool, Victoria University (United Kingdom), Victoria University, it received Ro ...
.
Oehme then wrote a paper with Lee and Yang in which they discussed the interplay of non-invariance under P, C and T. The same result was also independently obtained by Ioffe, Okun and Rudik. Both groups also discussed possible CP violations in neutral kaon decays.
Lev Landau
Lev Davidovich Landau (; 22 January 1908 – 1 April 1968) was a Soviet physicist who made fundamental contributions to many areas of theoretical physics. He was considered as one of the last scientists who were universally well-versed and ma ...
proposed in 1957 ''CP-symmetry'', often called just ''CP'' as the true symmetry between matter and antimatter. ''CP-symmetry'' is the product of two
transformations: C for charge conjugation and P for parity. In other words, a process in which all particles are exchanged with their
antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
s was assumed to be equivalent to the mirror image of the original process and so the combined CP-symmetry would be conserved in the weak interaction.
In 1962, a group of experimentalists at
Dubna
Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of '' naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and o ...
, on Okun's insistence, unsuccessfully searched for CP-violating kaon decay.
Experimental status
Indirect CP violation
In 1964,
James Cronin
James Watson Cronin (September 29, 1931 – August 25, 2016) was an American particle physicist.
Cronin and co-researcher Val Logsdon Fitch were awarded the 1980 Nobel Prize in Physics for a 1964 experiment that proved that certain subatomic ...
,
Val Fitch and coworkers provided clear evidence from
kaon
In particle physics, a kaon, also called a K meson and denoted , is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark ...
decay that CP-symmetry could be broken.
(cf. also Ref.
[The Fitch-Cronin Experiment]
/ref>). This work won them the 1980 Nobel Prize. This discovery showed that weak interactions violate not only the charge-conjugation symmetry C between particles and antiparticles and the P or parity symmetry, but also their combination. The discovery shocked particle physics and opened the door to questions still at the core of particle physics and of cosmology today. The lack of an exact CP-symmetry, but also the fact that it is so close to a symmetry, introduced a great puzzle.
The kind of CP violation (CPV) discovered in 1964 was linked to the fact that neutral kaon
In particle physics, a kaon, also called a K meson and denoted , is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark ...
s can transform into their antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
s (in which each quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
is replaced with the other's antiquark) and vice versa, but such transformation does not occur with exactly the same probability in both directions; this is called ''indirect'' CP violation.
Direct CP violation
Despite many searches, no other manifestation of CP violation was discovered until the 1990s, when the NA31 experiment at CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
suggested evidence for CP violation in the decay process of the very same neutral kaons (''direct'' CP violation). The observation was somewhat controversial, and final proof for it came in 1999 from the KTeV experiment at Fermilab
Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illinois, near Chicago, is a United States Department of Energy United States Department of Energy National Labs, national laboratory specializing in high-energy particle phys ...
and the NA48 experiment
The NA48 experiment was a series of particle physics experiments in the field of kaon physics being carried out at the North Area of the Super Proton Synchrotron at CERN. The collaboration involved over 100 physicists mostly from Western Europe ...
at CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
.[
]
Starting in 2001, a new generation of experiments, including the BaBar experiment at the Stanford Linear Accelerator Center ( SLAC) and the Belle Experiment
The Belle experiment was a particle physics experiment conducted by the Belle Collaboration, an international collaboration of more than 400 physicists and engineers, at the High Energy Accelerator Research Organisation ( KEK) in Tsukuba, Ibara ...
at the High Energy Accelerator Research Organisation ( KEK) in Japan, observed direct CP violation in a different system, namely in decays of the B meson
In particle physics, B mesons are mesons composed of a bottom antiquark and either an up (), down (), strange () or charm quark (). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark' ...
s. A large number of CP violation processes in B meson
In particle physics, B mesons are mesons composed of a bottom antiquark and either an up (), down (), strange () or charm quark (). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark' ...
decays have now been discovered. Before these " B-factory" experiments, there was a logical possibility that all CP violation was confined to kaon physics. However, this raised the question of why CP violation did ''not'' extend to the strong force, and furthermore, why this was not predicted by the unextended Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
, despite the model's accuracy for "normal" phenomena.
In 2011, a hint of CP violation in decays of neutral D mesons was reported by the LHCb
The LHCb (Large Hadron Collider beauty) experiment is a particle physics detector collecting data at the Large Hadron Collider at CERN. LHCb specializes in the measurements of the parameters of CP violation in the interactions of b- and c-hadro ...
experiment at CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
using 0.6 fb−1 of Run 1 data. However, the same measurement using the full 3.0 fb−1 Run 1 sample was consistent with CP-symmetry.
In 2013 LHCb announced discovery of CP violation in strange B meson decays.
In March 2019, LHCb announced discovery of CP violation in charmed decays with a deviation from zero of 5.3 standard deviations.
In 2020, the T2K Collaboration reported some indications of CP violation in leptons for the first time.
In this experiment, beams of muon neutrinos () and muon antineutrinos () were alternately produced by an accelerator. By the time they got to the detector, a significantly higher proportion of electron neutrinos () was observed from the beams, than electron antineutrinos () were from the beams. Analysis of these observations was not yet precise enough to determine the size of the CP violation, relative to that seen in quarks. In addition, another similar experiment, NOvA sees no evidence of CP violation in neutrino oscillations and is in slight tension with T2K.[
]
In May 2024, a team of theoretical physicists at Brown University
Brown University is a Private university, private Ivy League research university in Providence, Rhode Island, United States. It is the List of colonial colleges, seventh-oldest institution of higher education in the US, founded in 1764 as the ' ...
determined the third half-life Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* ''Half Life: ...
asymmetry of hydrogen-based quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
valve amplifiers indicated potential CP violation.
In March 2025, LHCb announced discovery of CP violation in baryon decays with a deviation from zero of 5.2 standard deviations, specifically the bottom lambda baryon.
CP violation in the Standard Model
"Direct" CP violation is allowed in the Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
if a complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
phase appears in the Cabibbo–Kobayashi–Maskawa matrix
In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix that contains information on the strength of the flavour-changing weak interaction. Technical ...
(CKM matrix) describing quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
mixing, or the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix) describing neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
mixing. A necessary condition for the appearance of the complex phase is the presence of at least three generations of fermions. If fewer generations are present, the complex phase parameter can be absorbed into redefinitions of the fermion fields.
A popular rephasing invariant whose vanishing signals absence of CP violation and occurs in most CP violating amplitudes is the '' Jarlskog invariant'':
for quarks, which is times the maximum value of For leptons, only an upper limit exists:
The reason why such a complex phase causes CP violation (CPV) is not immediately obvious, but can be seen as follows. Consider any given particles (or sets of particles) and and their antiparticles and Now consider the processes and the corresponding antiparticle process and denote their amplitudes and respectively. Before CP violation, these terms must be the ''same'' complex number. We can separate the magnitude and phase by writing . If a phase term is introduced from (e.g.) the CKM matrix, denote it . Note that contains the conjugate matrix to , so it picks up a phase term .
Now the formula becomes:
Physically measurable reaction rates are proportional to , thus so far nothing is different. However, consider that there are ''two different routes'': and or equivalently, two unrelated intermediate states: and . This is exactly the case for the kaon where the decay is performed via different quark channels (see the Figure above). In this case we have:
Some further calculation gives:
Thus, we see that a complex phase gives rise to processes that proceed at different rates for particles and antiparticles, and CP is violated.
From the theoretical end, the CKM matrix is defined as , where and are unitary transformation matrices which diagonalize the fermion mass matrices and , respectively.
Thus, there are two necessary conditions for getting a complex CKM matrix:
# At least one of and is complex, or the CKM matrix will be purely real.
# If both of them are complex, and must be different, i.e., , or the CKM matrix will be an identity matrix, which is also purely real.
For a standard model with three fermion generations, the most general non-Hermitian pattern of its mass matrices can be given by
This M matrix contains 9 elements and 18 parameters, 9 from the real coefficients and 9 from the imaginary coefficients. Obviously, a 3x3 matrix with 18 parameters is too difficult to diagonalize analytically. However, a naturally Hermitian can be given by
and it has the same unitary transformation matrix U with M.
Besides, parameters in are correlated to those in M directly in the ways shown below
That means if we diagonalize an matrix with 9 parameters, it has the same effect as diagonalizing an matrix with 18 parameters. Therefore, diagonalizing the matrix is certainly the most reasonable choice.
The and matrix patterns given above are the most general ones. The perfect way to solve the CPV problem in the standard model is to diagonalize such matrices analytically and to achieve a U matrix which applies to both. Unfortunately, even though the matrix has only 9 parameters, it is still too complicated to be diagonalized directly. Thus, an assumption
was employed to simplify the pattern, where is the real part of and is the imaginary part.
Such an assumption could further reduce the parameter number from 9 to 5 and the reduced matrix can be given by
where and .
Diagonalizing analytically, the eigenvalues are given by
and the matrix for up-type quarks can then be given by
However, the order of the eigenvalues and correspondingly the order of the columns of does not necessarily have to be but can be any permutation of those.
After obtaining a general matrix pattern, the same procedure can be applied to down-type quarks by introducing primed parameters. To construct the CKM matrix, the conjugate transpose of the matrix for up-type quarks, denoted as , has to be multiplied with the matrix for down-type quarks, denoted as . As mentioned earlier, there are no inherent constraints that dictate the assignment of eigenvalues to specific quark flavors. All potential permutations of eigenvalues are listed elsewhere.
Among these 36 potential CKM matrices, 4 of them
and
fit experimental data to the order of or better, at tree level, where is one of the Wolfenstein parameters.
The full expressions of parameters and are given by
The best fit of the CKM elements are
and
Since the discovery of CP violation in 1964, physicists have believed that in theory, within the framework of the Standard Model, it is sufficient to search for appropriate Yukawa couplings (equivalent to a mass matrix) in order to generate a complex phase in the CKM matrix, thus automatically breaking CP symmetry. However, the specific matrix pattern has remained elusive. The above derivation provides the first evidence for this idea and offers some explicit examples to support it.
Strong CP problem
There is no experimentally known violation of the CP-symmetry in quantum chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
. As there is no known reason for it to be conserved in QCD specifically, this is a "fine tuning" problem known as the strong CP problem.
QCD does not violate the CP-symmetry as easily as the electroweak theory
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forc ...
; unlike the electroweak theory in which the gauge fields couple to chiral
Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek language, Greek (''kheir''), "hand", a familiar chiral object.
An object or a system is ''chiral'' if it is dist ...
currents constructed from the fermion
In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
ic fields, the gluons couple to vector currents. Experiments do not indicate any CP violation in the QCD sector. For example, a generic CP violation in the strongly interacting sector would create the electric dipole moment
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall Chemical polarity, polarity. The International System of Units, SI unit for electric ...
of the neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
which would be comparable to 10−18 e·m while the experimental upper bound is roughly one trillionth that size.
This is a problem because at the end, there are natural terms in the QCD Lagrangian that are able to break the CP-symmetry.
For a nonzero choice of the θ angle and the chiral phase of the quark mass θ′ one expects the CP-symmetry to be violated. One usually assumes that the chiral quark mass phase can be converted to a contribution to the total effective angle, but it remains to be explained why this angle is extremely small instead of being of order one; the particular value of the θ angle that must be very close to zero (in this case) is an example of a fine-tuning problem in physics, and is typically solved by physics beyond the Standard Model
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neut ...
.
There are several proposed solutions to solve the strong CP problem. The most well-known is Peccei–Quinn theory, involving new scalar particles called axions. A newer, more radical approach not requiring the axion is a theory involving two time dimensions first proposed in 1998 by Bars, Deliduman, and Andreev.
Matter–antimatter imbalance
The observable universe is made chiefly of matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
, rather than consisting of equal parts of matter and antimatter
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
as might be expected. It can be demonstrated that, to create an imbalance in matter and antimatter from an initial condition of balance, the Sakharov conditions must be satisfied, one of which is the existence of CP violation during the extreme conditions of the first seconds after the Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
. Explanations which do not involve CP violation are less plausible, since they rely on the assumption that the matter–antimatter imbalance was present at the beginning, or on other admittedly exotic assumptions.
The Big Bang should have produced equal amounts of matter and antimatter if CP-symmetry was preserved; as such, there should have been total cancellation of both—protons
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' ( elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an electron (the pro ...
should have cancelled with antiproton
The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.
The exis ...
s, electrons
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
with positron
The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
s, neutrons with antineutron
The antineutron is the antiparticle of the neutron with symbol . It differs from the neutron only in that some of its properties have equal magnitude but opposite sign. It has the same mass as the neutron, and no net electric charge, but has opp ...
s, and so on. This would have resulted in a sea of radiation in the universe with no matter. Since this is not the case, after the Big Bang, physical laws must have acted differently for matter and antimatter, i.e. violating CP-symmetry.
The Standard Model contains at least three sources of CP violation. The first of these, involving the Cabibbo–Kobayashi–Maskawa matrix
In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix that contains information on the strength of the flavour-changing weak interaction. Technical ...
in the quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
sector, has been observed experimentally and can only account for a small portion of the CP violation required to explain the matter-antimatter asymmetry. The strong interaction should also violate CP, in principle, but the failure to observe the electric dipole moment of the neutron in experiments suggests that any CP violation in the strong sector is also too small to account for the necessary CP violation in the early universe. The third source of CP violation is the Pontecorvo–Maki–Nakagawa–Sakata matrix in the lepton
In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
sector. The current long-baseline neutrino oscillation experiments, T2K and NOνA, may be able to find evidence of CP violation over a small fraction of possible values of the CP violating Dirac phase while the proposed next-generation experiments, Hyper-Kamiokande and DUNE
A dune is a landform composed of wind- or water-driven sand. It typically takes the form of a mound, ridge, or hill. An area with dunes is called a dune system or a dune complex. A large dune complex is called a dune field, while broad, flat ...
, will be sensitive enough to definitively observe CP violation over a relatively large fraction of possible values of the Dirac phase. Further into the future, a neutrino factory could be sensitive to nearly all possible values of the CP violating Dirac phase. If neutrinos are Majorana fermions, the PMNS matrix could have two additional CP violating Majorana phases, leading to a fourth source of CP violation within the Standard Model. The experimental evidence for Majorana neutrinos would be the observation of neutrinoless double-beta decay. The best limits come from the GERDA experiment. CP violation in the lepton sector generates a matter-antimatter asymmetry through a process called leptogenesis. This could become the preferred explanation in the Standard Model for the matter-antimatter asymmetry of the universe if CP violation is experimentally confirmed in the lepton sector.
If CP violation in the lepton sector is experimentally determined to be too small to account for matter-antimatter asymmetry, some new physics beyond the Standard Model
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neut ...
would be required to explain additional sources of CP violation. Adding new particles and/or interactions to the Standard Model generally introduces new sources of CP violation since CP is not a symmetry of nature.
Sakharov proposed a way to restore CP-symmetry using T-symmetry, extending spacetime ''before'' the Big Bang. He described complete ''CPT reflections'' of events on each side of what he called the "initial singularity". Because of this, phenomena with an opposite arrow of time
An arrow is a fin-stabilized projectile launched by a bow. A typical arrow usually consists of a long, stiff, straight shaft with a weighty (and usually sharp and pointed) arrowhead attached to the front end, multiple fin-like stabilizers ca ...
at ''t'' < 0 would undergo an opposite CP violation, so the CP-symmetry would be preserved as a whole. The anomalous excess of matter over antimatter after the Big Bang in the orthochronous (or positive) sector, becomes an excess of antimatter before the Big Bang (antichronous or negative sector) as both charge conjugation, parity and arrow of time are reversed due to CPT reflections of all phenomena occurring over the initial singularity:
See also
* B-factory
*
*C-symmetry
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-sy ...
*T-symmetry
T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal,
: T: t \mapsto -t.
Since the second law of thermodynamics states that entropy increases as time flows toward the futur ...
* CPT symmetry
* BTeV experiment
*Cabibbo–Kobayashi–Maskawa matrix
In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix that contains information on the strength of the flavour-changing weak interaction. Technical ...
* LHCb experiment
* Penguin diagram
* Neutral particle oscillation
* Electron electric dipole moment
References
Further reading
*
*
*
* ''(A collection of essays introducing the subject, with an emphasis on experimental results.)''
* ''(A compilation of reprints of numerous important papers on the topic, including papers by T.D. Lee, Cronin, Fitch, Kobayashi and Maskawa, and many others.)''
*
*
*
*
* An elementary discussion of parity violation and CP violation is given in chapter 15 of this student level textboo
External links
Cern Courier article
{{DEFAULTSORT:Cp Violation
Quantum field theory
Asymmetry
Conservation laws
Particle physics
Physics beyond the Standard Model