HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a bundle is a generalization of a
fiber bundle In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
dropping the condition of a local product structure. The requirement of a local product structure rests on the bundle having a
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
. Without this requirement, more general objects can be considered bundles. For example, one can consider a bundle π: ''E'' → ''B'' with ''E'' and ''B'' sets. It is no longer true that the
preimage In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each ...
s \pi^(x) must all look alike, unlike fiber bundles, where the fibers must all be
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
(in the case of
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
s) and
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
.


Definition

A bundle is a triple where are sets and is a map. p 11. * is called the total space * is the base space of the bundle * is the projection This definition of a bundle is quite unrestrictive. For instance, the
empty function In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called ...
defines a bundle. Nonetheless it serves well to introduce the basic terminology, and every type of bundle has the basic ingredients of above with restrictions on and usually there is additional structure. For each is the fibre or fiber of the bundle over . A bundle is a subbundle of if and . A cross section is a map such that for each , that is, .


Examples

*If and are
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
s and is smooth,
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
and in addition a submersion, then the bundle is a fibered manifold. Here and in the following examples, the smoothness condition may be weakened to continuous or sharpened to analytic, or it could be anything reasonable, like continuously differentiable (), in between. *If for each two points and in the base, the corresponding fibers and are
homotopy equivalent In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A ...
, then the bundle is a
fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in Postnikov systems or obstruction theory. In this article, all ma ...
. *If for each two points and in the base, the corresponding fibers and are
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
, and in addition the bundle satisfies certain conditions of ''local triviality'' outlined in the pertaining linked articles, then the bundle is a
fiber bundle In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
. Usually there is additional structure, e.g. a group structure or a vector space structure, on the fibers besides a topology. Then is required that the homeomorphism is an isomorphism with respect to that structure, and the conditions of local triviality are sharpened accordingly. *A
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
is a fiber bundle endowed with a right
group action In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under ...
with certain properties. One example of a principal bundle is the
frame bundle In mathematics, a frame bundle is a principal fiber bundle F(E) associated with any vector bundle ''E''. The fiber of F(E) over a point ''x'' is the set of all ordered bases, or ''frames'', for ''E_x''. The general linear group acts naturally on ...
. *If for each two points and in the base, the corresponding fibers and are
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s of the same dimension, then the bundle is a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
if the appropriate conditions of local triviality are satisfied. The
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
is an example of a vector bundle.


Bundle objects

More generally, bundles or bundle objects can be defined in any
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
: in a category C, a bundle is simply an
epimorphism In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analo ...
π: ''E'' → ''B''. If the category is not
concrete Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water), the most–widely used building material, and the most-manufactur ...
, then the notion of a preimage of the map is not necessarily available. Therefore these bundles may have no fibers at all, although for sufficiently well behaved categories they do; for instance, for a category with pullbacks and a
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
1 the points of ''B'' can be identified with morphisms ''p'':1→''B'' and the fiber of ''p'' is obtained as the pullback of ''p'' and π. The category of bundles over ''B'' is a subcategory of the slice category (C↓''B'') of objects over ''B'', while the category of bundles without fixed base object is a subcategory of the
comma category In mathematics, a comma category (a special case being a slice category) is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a Category (mathematics), category to one another ...
(''C''↓''C'') which is also the
functor category In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object i ...
C², the category of
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s in C. The category of smooth vector bundles is a bundle object over the category of smooth manifolds in Cat, the
category of small categories In mathematics, specifically in category theory, the category of small categories, denoted by Cat, is the category whose objects are all small categories and whose morphisms are functors between categories. Cat may actually be regarded as a 2-c ...
. The
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
taking each manifold to its
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
is an example of a section of this bundle object.


See also

*
Fiber bundle In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
*
Fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in Postnikov systems or obstruction theory. In this article, all ma ...
* Fibered manifold


Notes


References

* * * {{DEFAULTSORT:Bundle (Mathematics) Category theory Fiber bundles