In
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
, a Bryant surface is a 2-dimensional surface embedded in 3-dimensional
hyperbolic space
In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1.
It is homogeneous, and satisfies the stronger property of being a symme ...
with constant
mean curvature
In mathematics, the mean curvature H of a surface S is an ''extrinsic'' measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.
The ...
equal to 1. These surfaces take their name from the geometer
Robert Bryant, who proved that every
simply-connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed into any other such path while preserving the two endpoint ...
minimal surface
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below).
The term "minimal surface" is used because these surfaces originally arose as surfaces that ...
in 3-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
is
isometric to a Bryant surface by a
holomorphic
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex deri ...
parameterization analogous to the (Euclidean)
Weierstrass–Enneper parameterization
In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.
Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.
Let f and g be functions on either t ...
.
[.]
References
Hyperbolic geometry
Riemannian geometry
Minimal surfaces
{{Riemannian-geometry-stub