In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, Brahmagupta's theorem states that if a
cyclic quadrilateral
In geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral (four-sided polygon) whose vertex (geometry), vertices all lie on a single circle, making the sides Chord (geometry), chords of the circle. This circle is called ...
is
orthodiagonal (that is, has
perpendicular
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
diagonals), then the perpendicular to a side from the point of intersection of the diagonals always
bisects the opposite side. It is named after the
Indian mathematician
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, ...
Brahmagupta
Brahmagupta ( – ) was an Indian Indian mathematics, mathematician and Indian astronomy, astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established Siddhanta, do ...
(598-668).
[ Coxeter, H. S. M.; Greitzer, S. L.: ''Geometry Revisited''. Washington, DC: Math. Assoc. Amer., p. 59, 1967]
More specifically, let ''A'', ''B'', ''C'' and ''D'' be four points on a circle such that the lines ''AC'' and ''BD'' are perpendicular. Denote the intersection of ''AC'' and ''BD'' by ''M''. Drop the perpendicular from ''M'' to the line ''BC'', calling the intersection ''E''. Let ''F'' be the intersection of the line ''EM'' and the edge ''AD''. Then, the theorem states that ''F'' is the
midpoint
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
Formula
The midpoint of a segment in ''n''-dim ...
''AD''.
Proof
We need to prove that ''AF'' = ''FD''. We will prove that both ''AF'' and ''FD'' are in fact equal to ''FM''.
To prove that ''AF'' = ''FM'', first note that the angles ''FAM'' and ''CBM'' are equal, because they are
inscribed angle
In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle.
Equivalently, an ...
s that intercept the same arc of the circle (CD). Furthermore, the angles ''CBM'' and ''CME'' are both
complementary to angle ''BCM'' (i.e., they add up to 90°), and are therefore equal. Finally, the angles ''CME'' and ''FMA'' are the same. Hence, ''AFM'' is an
isosceles triangle
In geometry, an isosceles triangle () is a triangle that has two Edge (geometry), sides of equal length and two angles of equal measure. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at le ...
, and thus the sides ''AF'' and ''FM'' are equal.
The proof that ''FD'' = ''FM'' goes similarly: the angles ''FDM'', ''BCM'', ''BME'' and ''DMF'' are all equal, so ''DFM'' is an isosceles triangle, so ''FD'' = ''FM''. It follows that ''AF'' = ''FD'', as the theorem claims.
See also
*
Brahmagupta's formula
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized vers ...
for the area of a cyclic quadrilateral
References
External links
Brahmagupta's Theoremat
cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet Union, Soviet-born Israeli Americans, Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow ...
*{{MathWorld, urlname=BrahmaguptasTheorem, title=Brahmagupta's theorem
Brahmagupta
Theorems about quadrilaterals and circles
Articles containing proofs