Biologically-inspired Computing
   HOME

TheInfoList



OR:

Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to
connectionism Connectionism is an approach to the study of human mental processes and cognition that utilizes mathematical models known as connectionist networks or artificial neural networks. Connectionism has had many "waves" since its beginnings. The first ...
,
social behavior Social behavior is behavior among two or more organisms within the same species, it encompasses any behavior in which one member affects another. Social behavior can be seen as similar to an exchange of goods, with the expectation that when you ...
, and
emergence In philosophy, systems theory, science, and art, emergence occurs when a complex entity has properties or behaviors that its parts do not have on their own, and emerge only when they interact in a wider whole. Emergence plays a central rol ...
. Within
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
, bio-inspired computing relates to artificial intelligence and machine learning. Bio-inspired computing is a major subset of natural computation.


History

Early Ideas The ideas behind biological computing trace back to 1936 and the first description of an abstract computer, which is now known as a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
.
Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. He was highly influential in the development of theoretical compute ...
firstly described the abstract construct using a biological specimen. Turing imagined a mathematician that has three important attributes. He always has a pencil with an eraser, an unlimited number of papers and a working set of eyes. The eyes allow the mathematician to see and perceive any symbols written on the paper while the pencil allows him to write and erase any symbols that he wants. Lastly, the unlimited paper allows him to store anything he wants memory. Using these ideas he was able to describe an abstraction of the modern digital computer. However Turing mentioned that anything that can perform these functions can be considered such a machine and he even said that even electricity should not be required to describe digital computation and machine thinking in general. Neural Networks First described in 1943 by Warren McCulloch and Walter Pitts, neural networks are a prevalent example of biological systems inspiring the creation of computer algorithms. They first mathematically described that a system of simplistic neurons was able to produce simple
logical operations In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the ...
such as
logical conjunction In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or ...
,
disjunction In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is ...
and
negation In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \over ...
. They further showed that a system of neural networks can be used to carry out any calculation that requires finite memory. Around 1970 the research around neural networks slowed down and many consider a 1969
book A book is a structured presentation of recorded information, primarily verbal and graphical, through a medium. Originally physical, electronic books and audiobooks are now existent. Physical books are objects that contain printed material, ...
by Marvin Minsky and Seymour Papert as the main cause. Their book showed that neural network models were able only model systems that are based on Boolean functions that are true only after a certain threshold value. Such functions are also known as threshold functions. The book also showed that a large amount of systems cannot be represented as such meaning that a large amount of systems cannot be modeled by neural networks. Another book by James Rumelhart and David McClelland in 1986 brought neural networks back to the spotlight by demonstrating the linear back-propagation algorithm something that allowed the development of multi-layered neural networks that did not adhere to those limits. Ant Colonies Douglas Hofstadter in 1979 described an idea of a biological system capable of performing intelligent calculations even though the individuals comprising the system might not be intelligent. More specifically, he gave the example of an ant colony that can carry out intelligent tasks together but each individual ant cannot exhibiting something called " emergent behavior." Azimi et al. in 2009 showed that what they described as the "ant colony" algorithm, a clustering algorithm that is able to output the number of clusters and produce highly competitive final clusters comparable to other traditional algorithms. Lastly Hölder and Wilson in 2009 concluded using historical data that ants have evolved to function as a single "superogranism" colony. A very important result since it suggested that group selection
evolutionary algorithm Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve "difficult" problems, at least Approximation, approximately, for which no exact or satisfactory solution methods are k ...
s coupled together with algorithms similar to the "ant colony" can be potentially used to develop more powerful algorithms.


Areas of research

Some areas of study in biologically inspired computing, and their biological counterparts:


Population Based Bio-Inspired Algorithms

Bio-inspired computing, which work on a population of possible solutions in the context of
evolutionary algorithm Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve "difficult" problems, at least Approximation, approximately, for which no exact or satisfactory solution methods are k ...
s or in the context of
swarm intelligence Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 198 ...
algorithms, are subdivided into Population Based Bio-Inspired Algorithms (PBBIA). They include
Evolutionary Algorithm Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve "difficult" problems, at least Approximation, approximately, for which no exact or satisfactory solution methods are k ...
s,
Particle Swarm Optimization In computational science, particle swarm optimization (PSO) is a computational method that Mathematical optimization, optimizes a problem by iterative method, iteratively trying to improve a candidate solution with regard to a given measure of qu ...
,
Ant colony optimization algorithms In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems that can be reduced to finding good paths through graphs. Artificial ants represent mul ...
and
Artificial bee colony algorithm In computer science and operations research, the artificial bee colony algorithm (ABC) is an optimization algorithm based on the intelligent foraging behaviour of honey bee swarm, proposed by Derviş Karaboğa (Erciyes University) in 2005. Alg ...
s.


Virtual Insect Example

Bio-inspired computing can be used to train a virtual insect. The insect is trained to navigate in an unknown terrain for finding food equipped with six simple rules: * turn right for target-and-obstacle left; * turn left for target-and-obstacle right; * turn left for target-left-obstacle-right; * turn right for target-right-obstacle-left; * turn left for target-left without obstacle; * turn right for target-right without obstacle. The virtual insect controlled by the trained
spiking neural network Spiking neural networks (SNNs) are artificial neural networks (ANN) that mimic natural neural networks. These models leverage timing of discrete spikes as the main information carrier. In addition to Artificial neuron, neuronal and Electrical ...
can find food after training in any unknown terrain. After several generations of rule application it is usually the case that some forms of complex behaviour emerge. Complexity gets built upon complexity until the result is something markedly complex, and quite often completely counterintuitive from what the original rules would be expected to produce (see
complex system A complex system is a system composed of many components that may interact with one another. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication sy ...
s). For this reason, when modeling the
neural network A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or signal pathways. While individual neurons are simple, many of them together in a network can perfor ...
, it is necessary to accurately model an ''in vivo'' network, by live collection of "noise" coefficients that can be used to refine statistical inference and extrapolation as system complexity increases. Natural evolution is a good analogy to this method–the rules of evolution (
selection Selection may refer to: Science * Selection (biology), also called natural selection, selection in evolution ** Sex selection, in genetics ** Mate selection, in mating ** Sexual selection in humans, in human sexuality ** Human mating strat ...
, recombination/reproduction,
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
and more recently transposition) are in principle simple rules, yet over millions of years have produced remarkably complex organisms. A similar technique is used in
genetic algorithm In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to g ...
s.


Brain-inspired computing

Brain-inspired computing refers to computational models and methods that are mainly based on the mechanism of the brain, rather than completely imitating the brain. The goal is to enable the machine to realize various cognitive abilities and coordination mechanisms of human beings in a brain-inspired manner, and finally achieve or exceed Human intelligence level.


Research

Artificial intelligence Artificial intelligence (AI) is the capability of computer, computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making. It is a field of re ...
researchers are now aware of the benefits of learning from the brain information processing mechanism. And the progress of brain science and neuroscience also provides the necessary basis for artificial intelligence to learn from the brain information processing mechanism. Brain and neuroscience researchers are also trying to apply the understanding of brain information processing to a wider range of science field. The development of the discipline benefits from the push of information technology and smart technology and in turn brain and neuroscience will also inspire the next generation of the transformation of information technology.


The influence of brain science on Brain-inspired computing

Advances in brain and neuroscience, especially with the help of new technologies and new equipment, support researchers to obtain multi-scale, multi-type biological evidence of the brain through different experimental methods, and are trying to reveal the structure of bio-intelligence from different aspects and functional basis. From the microscopic neurons, synaptic working mechanisms and their characteristics, to the mesoscopic network connection model, to the links in the macroscopic brain interval and their synergistic characteristics, the multi-scale structure and functional mechanisms of brains derived from these experimental and mechanistic studies will provide important inspiration for building a future brain-inspired computing model.


Brain-inspired chip

Broadly speaking, brain-inspired chip refers to a chip designed with reference to the structure of human brain neurons and the cognitive mode of human brain. Obviously, the "
neuromorphic Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain. A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations. In recent times, the term ...
chip" is a brain-inspired chip that focuses on the design of the chip structure with reference to the human brain neuron model and its tissue structure, which represents a major direction of brain-inspired chip research. Along with the rise and development of “brain plans” in various countries, a large number of research results on neuromorphic chips have emerged, which have received extensive international attention and are well known to the academic community and the industry. For example, EU-backed
SpiNNaker A spinnaker is a sail designed specifically for sailing off the wind on courses between a Point of sail#Reaching, reach (wind at 90° to the course) to Point of sail#Running downwind, downwind (course in the same direction as the wind). Spinna ...
and BrainScaleS, Stanford's Neurogrid, IBM's
TrueNorth A cognitive computer is a computer that hardwires artificial intelligence and machine learning algorithms into an integrated circuit that closely reproduces the behavior of the human brain. It generally adopts a neuromorphic engineering approach. ...
, and Qualcomm's
Zeroth 0th or zeroth may refer to: Mathematics, science and technology * 0th or zeroth, an ordinal for the number 0 * 0th dimension, a topological space * 0th element, of a data structure in computer science * 0th law of Thermodynamics * Zeroth (sof ...
. TrueNorth is a brain-inspired chip that IBM has been developing for nearly 10 years. The US DARPA program has been funding IBM to develop pulsed neural network chips for intelligent processing since 2008. In 2011, IBM first developed two cognitive silicon prototypes by simulating brain structures that could learn and process information like the brain. Each neuron of a brain-inspired chip is cross-connected with massive parallelism. In 2014, IBM released a second-generation brain-inspired chip called "TrueNorth." Compared with the first generation brain-inspired chips, the performance of the TrueNorth chip has increased dramatically, and the number of neurons has increased from 256 to 1 million; the number of programmable synapses has increased from 262,144 to 256 million; Subsynaptic operation with a total power consumption of 70 mW and a power consumption of 20 mW per square centimeter. At the same time, TrueNorth handles a nuclear volume of only 1/15 of the first generation of brain chips. At present, IBM has developed a prototype of a neuron computer that uses 16 TrueNorth chips with real-time video processing capabilities. The super-high indicators and excellence of the TrueNorth chip have caused a great stir in the academic world at the beginning of its release. In 2012, the Institute of Computing Technology of the Chinese Academy of Sciences(CAS) and the French Inria collaborated to develop the first chip in the world to support the deep neural network processor architecture chip "Cambrian". The technology has won the best international conferences in the field of computer architecture, ASPLOS and MICRO, and its design method and performance have been recognized internationally. The chip can be used as an outstanding representative of the research direction of brain-inspired chips.


Unclear Brain mechanism cognition

The human brain is a product of evolution. Although its structure and information processing mechanism are constantly optimized, compromises in the evolution process are inevitable. The cranial nervous system is a multi-scale structure. There are still several important problems in the mechanism of information processing at each scale, such as the fine connection structure of neuron scales and the mechanism of brain-scale feedback. Therefore, even a comprehensive calculation of the number of neurons and synapses is only 1/1000 of the size of the human brain, and it is still very difficult to study at the current level of scientific research. Recent advances in brain simulation linked individual variability in human cognitive
processing speed Processing is a free graphics library and integrated development environment (IDE) built for the electronic arts, new media art, and visual design communities with the purpose of teaching non-programmers the fundamentals of computer programmi ...
and
fluid intelligence The concepts of fluid intelligence (''g''f) and crystallized intelligence (''g''c) were introduced in 1943 by the psychologist Raymond Cattell. According to Cattell's psychometrically-based theory, general intelligence (''g'') is subdivided into ...
to the balance of excitation and inhibition in structural brain networks,
functional connectivity Resting state fMRI (rs-fMRI or R-fMRI), also referred to as task-independent fMRI or task-free fMRI, is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a rest ...
, winner-take-all decision-making and
attractor In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain c ...
working memory Working memory is a cognitive system with a limited capacity that can Memory, hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term m ...
.


Unclear Brain-inspired computational models and algorithms

In the future research of cognitive brain computing model, it is necessary to model the brain information processing system based on multi-scale brain neural system data analysis results, construct a brain-inspired multi-scale neural network computing model, and simulate multi-modality of brain in multi-scale. Intelligent behavioral ability such as perception, self-learning and memory, and choice. Machine learning algorithms are not flexible and require high-quality sample data that is manually labeled on a large scale. Training models require a lot of computational overhead. Brain-inspired artificial intelligence still lacks advanced cognitive ability and inferential learning ability.


Constrained Computational architecture and capabilities

Most of the existing brain-inspired chips are still based on the research of von Neumann architecture, and most of the chip manufacturing materials are still using traditional semiconductor materials. The neural chip is only borrowing the most basic unit of brain information processing. The most basic computer system, such as storage and computational fusion, pulse discharge mechanism, the connection mechanism between neurons, etc., and the mechanism between different scale information processing units has not been integrated into the study of brain-inspired computing architecture. Now an important international trend is to develop neural computing components such as brain memristors, memory containers, and sensory sensors based on new materials such as nanometers, thus supporting the construction of more complex brain-inspired computing architectures. The development of brain-inspired computers and large-scale brain computing systems based on brain-inspired chip development also requires a corresponding software environment to support its wide application.


See also

*
Applications of artificial intelligence Artificial intelligence (AI) has been used in applications throughout industry and academia. In a manner analogous to electricity or computers, AI serves as a general-purpose technology. AI programs are designed to simulate human perception and u ...
*
Behavior based robotics Behavior-based robotics (BBR) or behavioral robotics is an approach in robotics that focuses on robots that are able to exhibit complex-appearing behaviors despite little internal variable state to model its immediate environment, mostly gradually ...
*
Bioinformatics Bioinformatics () is an interdisciplinary field of science that develops methods and Bioinformatics software, software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, ...
*
Bionics Bionics or biologically inspired engineering is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology. The word ''bionic'', coined by Jack E. Steele in August 195 ...
*
Cognitive architecture A cognitive architecture is both a theory about the structure of the human mind and to a computational instantiation of such a theory used in the fields of artificial intelligence (AI) and computational cognitive science. These formalized models ...
*
Cognitive modeling A cognitive model is a representation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a se ...
*
Cognitive science Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition (in a broad sense). Mental faculties of concern to cognitive scientists include percep ...
*
Connectionism Connectionism is an approach to the study of human mental processes and cognition that utilizes mathematical models known as connectionist networks or artificial neural networks. Connectionism has had many "waves" since its beginnings. The first ...
*
Digital morphogenesis Digital morphogenesis is a type of generative art in which complex shape development, or morphogenesis, is enabled by computation. This concept is applicable in many areas of design, art, architecture, and modeling. The concept was originally deve ...
*
Digital organism A digital organism is a self-replicating computer program that mutates and evolves. Digital organisms are used as a tool to study the dynamics of Darwinian evolution, and to test or verify specific hypotheses or mathematical models of evolutio ...
*
Fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely ...
*
Gene expression programming Gene expression programming (GEP) in computer programming is an evolutionary algorithm that creates computer programs or models. These computer programs are complex tree structures that learn and adapt by changing their sizes, shapes, and compos ...
*
Genetic algorithm In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to g ...
*
Genetic programming Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection (evolutionary algorithm), selection a ...
*
Gerald Edelman Gerald Maurice Edelman (; July 1, 1929 – May 17, 2014) was an American biologist who shared the 1972 Nobel Prize in Physiology or Medicine for work with Rodney Robert Porter on the immune system. Edelman's Nobel Prize-winning research conc ...
*
Janine Benyus Janine M. Benyus (born 1958) is an American natural sciences writer, innovation consultant, and author. After writing books on wildlife and animal behavior, she coined the term Biomimicry to describe intentional problem-solving design inspired ...
*
Learning classifier system Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm in evolutionary computation) with a learning component (performing either supervised ...
* Mark A. O'Neill *
Mathematical biology Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of living organisms to investigate the principles that govern the structure, development ...
*
Mathematical model A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
* Natural computation *
Neuroevolution Neuroevolution, or neuro-evolution, is a form of artificial intelligence that uses evolutionary algorithms to generate artificial neural networks (ANN), parameters, and rules. It is most commonly applied in artificial life, general game playing ...
* Olaf Sporns *
Organic computing Organic computing is computing that behaves and interacts with humans in an organic (model), organic manner. The term "organic" is used to describe the system's behavior, and does not imply that they are constructed from Organic matter, organic ma ...
*
Unconventional computing Unconventional computing (also known as alternative computing or nonstandard computation) is computing by any of a wide range of new or unusual methods. The term ''unconventional computation'' was coined by Cristian S. Calude and John Casti an ...
; Lists *
List of emerging technologies This is a list of emerging technologies, which are emerging technologies, in-development technical innovations that have significant potential in their applications. The criteria for this list is that the technology must: # Exist in some way; ...
*
Outline of artificial intelligence The following outline is provided as an overview of and topical guide to artificial intelligence: Artificial intelligence (AI) is intelligence exhibited by machines or software. It is also the name of the scientific field which studies how to ...


References


Further reading

''(the following are presented in ascending order of complexity and depth, with those new to the field suggested to start from the top)'' *
Nature-Inspired Algorithms
*
Biologically Inspired Computing
*
Digital Biology
, Peter J. Bentley. *
First International Symposium on Biologically Inspired Computing
*
Emergence: The Connected Lives of Ants, Brains, Cities and Software
', Steven Johnson. * ''Dr. Dobb's Journal'', Apr-1991. (Issue theme: Biocomputing) *
Turtles, Termites and Traffic Jams
', Mitchel Resnick. * ''Understanding Nonlinear Dynamics'', Daniel Kaplan and
Leon Glass Leon Glass (born 1943) is an American scientist who has studied various aspects of the application of mathematical and physical methods to biology, with special interest in vision, cardiac arrhythmia, and genetic networks. Biography Leon Gl ...
. * *
Swarms and Swarm Intelligence
' by Michael G. Hinchey, Roy Sterritt, and Chris Rouff, *
Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications
', L. N. de Castro, Chapman & Hall/CRC, June 2006. *


Gary William Flake
MIT Press. 1998, hardcover ed.; 2000, paperback ed. An in-depth discussion of many of the topics and underlying themes of bio-inspired computing. * Kevin M. Passino
Biomimicry for Optimization, Control, and Automation
Springer-Verlag, London, UK, 2005. *
Recent Developments in Biologically Inspired Computing
', L. N. de Castro and F. J. Von Zuben, Idea Group Publishing, 2004. *Nancy Forbes, Imitation of Life: How Biology is Inspiring Computing, MIT Press, Cambridge, MA 2004. * M. Blowers and A. Sisti, ''Evolutionary and Bio-inspired Computation: Theory and Applications'', SPIE Press, 2007. * X. S. Yang, Z. H. Cui, R. B. Xiao, A. H. Gandomi, M. Karamanoglu,
Swarm Intelligence and Bio-Inspired Computation: Theory and Applications
', Elsevier, 2013. *
Biologically Inspired Computing Lecture Notes
,
Luis M. Rocha Luis M. Rocha is the George J. Klir Professor of Systems Science at the Thomas J. Watson College of Engineering and Applied Science, Binghamton University (State University of New York). He is also Visiting Professor at the Católica Biom ...
* ''The portable UNIX programming system (PUPS) and CANTOR: a computational envorionment for dynamical representation and analysis of complex neurobiological data'', Mark A. O'Neill, and Claus-C Hilgetag, Phil Trans R Soc Lond B 356 (2001), 1259–1276 *
Going Back to our Roots: Second Generation Biocomputing
, J. Timmis, M. Amos, W. Banzhaf, and A. Tyrrell, Journal of Unconventional Computing 2 (2007) 349–378. * * * C-M. Pintea, 2014
Advances in Bio-inspired Computing for Combinatorial Optimization Problem
Springer *
PSA: A novel optimization algorithm based on survival rules of porcellio scaber
, Y. Zhang and S. Li


External links


Nature Inspired Computing and Engineering (NICE)
Group, University of Surrey, UK
Biologically Inspired Computation for Chemical Sensing ''Neurochem'' ProjectAND CorporationCentre of Excellence for Research in Computational Intelligence and Applications
Birmingham, UK
BiSNET: Biologically-inspired architecture for Sensor NETworks

BiSNET/e: A Cognitive Sensor Networking Architecture with Evolutionary Multiobjective OptimizationBiologically inspired neural networksNCRA
UCD, Dublin Ireland
The PUPS/P3 Organic Computing Environment for Linux

SymbioticSphere: A Biologically-inspired Architecture for Scalable, Adaptive and Survivable Network Systems

The runner-root algorithm

Bio-inspired Wireless Networking Team (BioNet)

Biologically Inspired Intelligence
{{DEFAULTSORT:Bio-Inspired Computing Theoretical computer science Natural computation Bioinspiration