HOME

TheInfoList



OR:

In
orbital mechanics Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal ...
, the beta angle (\boldsymbol) is the
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
between a
satellite A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
's
orbital plane The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) a ...
around
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
and the
geocentric position The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior ...
of the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. The beta angle determines the percentage of time that a satellite in
low Earth orbit A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
(LEO) spends in direct
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
, absorbing solar radiation. For objects launched into orbit, the solar beta angle of inclined and
sun-synchronous A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time. More technically, it is ...
orbits depend on launch altitude, inclination, and time. The beta angle does not define a unique orbital plane: all satellites in orbit with a given beta angle at a given
orbital altitude A geocentric orbit, Earth-centered orbit, or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,21 ...
have the same exposure to the Sun, even though they may be orbiting in different planes around
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. The beta angle varies between +90° and −90°, and the direction in which the satellite orbits its primary body determines whether the beta angle sign is positive or negative. An imaginary observer standing on the Sun defines a beta angle as positive if the satellite in question orbits in a counterclockwise direction and negative if it revolves
clockwise Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to ...
. The maximum amount of time that a satellite in a normal LEO mission can spend in
Earth's shadow Earth's shadow (or Earth shadow) is the shadow that Earth itself casts through its atmosphere and into outer space, toward the antisolar point. During the twilight period (both early dusk and late dawn), the shadow's visible fringe – someti ...
occurs at a beta angle of 0°. A satellite in such an orbit spends at least 59% of its
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
in sunlight.


Light and shadow

The degree of orbital shadowing an object in LEO experiences is determined by that object's beta angle. An object launched into an initial orbit with an inclination equal to the complement of the Earth's inclination to the ecliptic results in an initial beta angle of 0 degrees (\beta = 0°) for the orbiting object. This allows the object to spend the maximum possible amount of its
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
in the Earth's shadow, and results in extremely reduced absorption of solar energy. At a LEO of 280 kilometers, the object is in sunlight through 59% of its orbit (approximately 53 minutes in Sunlight, and 37 minutes in shadow.) On the other extreme, an object launched into an orbit parallel to the terminator results in a beta angle of 90 degrees (\beta = 90°), and the object is in sunlight 100% of the time. An example would be a polar orbit initiated at local dawn or dusk on an
equinox A solar equinox is a moment in time when the Sun appears directly above the equator, rather than to its north or south. On the day of the equinox, the Sun appears to rise directly east and set directly west. This occurs twice each year, arou ...
. Beta angle can be controlled to keep a satellite as cool as possible (for instruments that require low temperatures, such as infrared cameras) by keeping the beta angle as close to zero as possible, or, conversely, to keep a satellite in sunlight as much as possible (for conversion of sunlight by its solar panels, for solar stability of sensors, or to study the Sun) by maintaining a beta angle as close to +90 or -90 as possible.


Determination and application of beta angles

The value of a solar beta angle for a satellite in Earth orbit can be found using the equation \beta=\sin^ cos(\Gamma)\sin(\Omega)\sin(i)-\sin(\Gamma)\cos(\epsilon)\cos(\Omega)\sin(i)+\sin(\Gamma)\sin(\epsilon)\cos(i)/math> where \Gamma is the ecliptic true solar longitude, \Omega is the right ascension of ascending node (RAAN), i is the orbit's
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Eart ...
, and \epsilon is the
obliquity of the ecliptic In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbital ...
(approximately 23.45 degrees for Earth at present). The RAAN and inclination are properties of the satellite's orbit, and the solar longitude is a function of Earth's position in orbit around the Sun (approximately linearly proportional to day of year relative to the vernal equinox). The above discussion defines the beta angle of satellites orbiting the Earth, but a beta angle can be calculated for any orbiting three body system: the same definition can be applied to give the beta angle of other objects. For example, the beta angle of a satellite in orbit around Mars, with respect to the Earth, defines how much of the time the satellite has a line of sight to the Earth - that is, it determines how long the Earth is shining on the satellite and how long the Earth is blocked from view. That same satellite also will have a beta angle with respect to the Sun, and in fact it has a beta angle for any
celestial object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
one might wish to calculate one for: any satellite orbiting a body (i.e. the Earth) will be in that body's shadow with respect to a given celestial object (like a star) some of the time, and in its line-of-sight the rest of the time. Beta angles describing non-
geocentric In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, an ...
orbits are important when space agencies launch satellites into orbits around other bodies in the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
.


Importance in spaceflight

When the
Space Shuttle The Space Shuttle is a retired, partially reusable launch system, reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. ...
was in service on missions to the
International Space Station The International Space Station (ISS) is a large space station that was Assembly of the International Space Station, assembled and is maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA (United ...
, the beta angle of the space station's orbit was a crucial consideration; periods referred to as "beta cutout", during which the shuttle could not safely be launched to the ISS, were a direct result of the beta angle of the space station at those times. When the orbiter was in-flight (not docked to ISS) and it flew to a beta angle greater than 60 degrees, the orbiter went into "rotisserie" mode, and slowly rotated around its X-axis (nose to tail axis), for thermal regulation reasons. For flights to ISS, the shuttle could launch during an ISS beta cutout if the ISS would be at a beta less than 60 degrees at dock, and throughout the docked phase. Therefore, the mission duration affected launch timing when the beta cutout dates were approaching.


See also

*
International Space Station The International Space Station (ISS) is a large space station that was Assembly of the International Space Station, assembled and is maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA (United ...
*
Low Earth orbit A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
* Launch window


References


External links


NASA: ISS Beta Angle
{{DEFAULTSORT:Beta Angle Spaceflight Earth orbits Astrodynamics