
In
orbital mechanics
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal ...
, the beta angle (
) is the
angle
In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
between a
satellite
A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
's
orbital plane
The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) a ...
around
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
and the
geocentric position
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior ...
of the
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
.
The beta angle determines the percentage of time that a satellite in
low Earth orbit
A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
(LEO) spends in direct
sunlight
Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
, absorbing solar radiation.
For objects launched into orbit, the solar beta angle of
inclined and
sun-synchronous
A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time. More technically, it is ...
orbits depend on launch altitude, inclination, and time.
The beta angle does not define a unique orbital plane: all satellites in orbit with a given beta angle at a given
orbital altitude
A geocentric orbit, Earth-centered orbit, or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,21 ...
have the same exposure to the Sun, even though they may be orbiting in different planes around
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
.
The beta angle varies between +90° and −90°, and the direction in which the satellite orbits its
primary body determines whether the beta angle sign is positive or negative. An imaginary observer standing on the Sun defines a beta angle as positive if the satellite in question orbits in a counterclockwise direction and negative if it revolves
clockwise
Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to ...
.
The maximum amount of time that a satellite in a normal LEO mission can spend in
Earth's shadow
Earth's shadow (or Earth shadow) is the shadow that Earth itself casts through its atmosphere and into outer space, toward the antisolar point. During the twilight period (both early dusk and late dawn), the shadow's visible fringe – someti ...
occurs at a beta angle of 0°. A satellite in such an orbit spends at least 59% of its
orbital period
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
in sunlight.
Light and shadow
The degree of orbital shadowing an object in LEO experiences is determined by that object's beta angle. An object launched into an initial orbit with an inclination equal to the complement of the Earth's inclination to the ecliptic results in an initial beta angle of 0 degrees (
= 0°) for the orbiting object. This allows the object to spend the maximum possible amount of its
orbital period
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
in the Earth's shadow, and results in extremely reduced absorption of solar energy. At a LEO of 280 kilometers, the object is in sunlight through 59% of its orbit (approximately 53 minutes in Sunlight, and 37 minutes in shadow.
) On the other extreme, an object launched into an orbit parallel to the
terminator results in a beta angle of 90 degrees (
= 90°), and the object is in sunlight 100% of the time.
An example would be a polar orbit initiated at local dawn or dusk on an
equinox
A solar equinox is a moment in time when the Sun appears directly above the equator, rather than to its north or south. On the day of the equinox, the Sun appears to rise directly east and set directly west. This occurs twice each year, arou ...
. Beta angle can be controlled to keep a satellite as cool as possible (for instruments that require low temperatures, such as infrared cameras) by keeping the beta angle as close to zero as possible, or, conversely, to keep a satellite in sunlight as much as possible (for conversion of sunlight by its solar panels, for solar stability of sensors, or to study the Sun) by maintaining a beta angle as close to +90 or -90 as possible.
Determination and application of beta angles
The value of a solar beta angle for a satellite in Earth orbit can be found using the equation