Balanced audio is a method of interconnecting audio equipment using balanced interfaces. This type of connection is very important in
sound recording
Sound recording and reproduction is the electrical, mechanical, electronic, or digital inscription and re-creation of sound waves, such as spoken voice, singing, instrumental music, or sound effects. The two main classes of sound recordin ...
and production because it allows the use of long cables while reducing susceptibility to external noise caused by electromagnetic interference. The balanced interface guarantees that induced noise appears as common-mode voltages at the receiver which can be rejected by a differential device.
Balanced connections typically use shielded twisted-pair cable and three-conductor connectors. The connectors are usually three-pin
XLR or
TRS phone connectors. When used in this manner, each cable carries one channel, therefore stereo audio (for example) would require two of them.
Applications
Many
microphone
A microphone, colloquially called a mic or mike (), is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and pub ...
s operate at low voltage levels and some with high
output impedance (hi-Z), which makes long microphone cables especially susceptible to
electromagnetic interference
Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrost ...
. Microphone interconnections are therefore a common application for a balanced interconnection, which allows the receiver to reject most of this induced noise. If the
power amplifiers of a
public address system are located at any distance from the
mixing console
A mixing console or mixing desk is an electronic device for mixing audio signals, used in sound recording and reproduction and sound reinforcement systems. Inputs to the console include microphones, signals from electric or electronic inst ...
, it is also normal to use balanced lines for the signal paths from the mixer to these amplifiers. Many other components, such as graphic equalizers and effects units, have balanced inputs and outputs to allow this. In recording and for short cable runs in general, a compromise is necessary between the noise reduction given by balanced lines and the cost introduced by the extra
circuitry they require.
Interference reduction
Balanced audio connections use a number of techniques to reduce noise.
A typical balanced cable contains two identical wires, which are twisted together and then wrapped with a third conductor (foil or braid) that acts as a
shield. The two wires form a circuit that can carry an
audio signal.
The term ''balanced'' comes from the method of ''balancing'' the
impedance of each wire in the circuit; the line and all circuits directly connected to it (such as the driver and receiver) must have identical impedances with respect to some reference point. This means that much of the electromagnetic interference will induce an equal noise voltage in each wire. Since the differential device at the receiving end only responds to the
difference in voltage between the two signal lines, noise that is identical on both wires is rejected. This method can be implemented with a
differential amplifier. A
transformer
A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
may also be used instead of an active input stage.
A
twisted pair
Twisted pair cabling is a type of wiring used for communications in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted ba ...
makes the loop area between the conductors as small as possible, and ensures that a magnetic field that passes equally through adjacent loops will induce equal levels of noise on both lines, which is canceled out by the differential device in the receiver. If the noise source is extremely close to the cable, then it is possible it will be induced on one of the lines more than the other, and it will not be canceled as well, but canceling will still occur to the extent of the amount of noise that is equal on both lines.
The separate shield that’s commonly provided in a balanced audio cable also yields a
noise rejection advantage over an unbalanced two-conductor arrangement (such as used in typical
home stereos) where the shield must also act as the signal return wire. Therefore, any noise currents induced into a balanced audio shield will not be directly modulated onto the signal, whereas in a two-conductor system they will be. This also prevents
ground loop problems, by separating the shield/chassis from signal ground.
Differential signaling
Signals are often transmitted over balanced connections using the
differential mode, meaning the wires carry signals that are equal in magnitude but of opposite
polarity
Polarity may refer to:
Science
* Electrical polarity, direction of electrical current
* Polarity (mutual inductance), the relationship between components such as transformer windings
* Polarity (projective geometry), in mathematics, a duality of o ...
to each other (for instance, in an
XLR connector, pin 2 carries the signal with normal polarity, and pin 3 carries an inverted version of the same signal). Despite popular belief, this arrangement is not necessary for noise rejection. As long as the impedances are balanced, noise will couple equally into the two wires (and be rejected by a differential amplifier), regardless of the signal that is present on them.
A simple method of driving a balanced line is to inject the signal into the "hot" wire through a known
source impedance, and connect the "cold" wire to the signal's local ground reference through an identical impedance. Due to common misconceptions about differential signalling, this is often referred to as a
quasi-balanced or
impedance-balanced output, though it is, in fact, fully balanced and will reject common-mode interference.
However, there are some minor benefits to driving the line with a fully differential output:
* Though the signal level would not be changed due to
nominal level standardization, the maximum output from the differential drivers is twice as much, giving 6 dB extra
headroom.
*Increasing cable capacitance over long cable runs decreases the signal level at which high frequencies are attenuated. If each wire carries half the signal voltage swing as in fully differential outputs then longer cable runs can be used without the loss of high frequencies.
* Noise that is correlated between the two amps (from imperfect
power supply rejection, for instance), would be cancelled out.
* At higher frequencies, the output impedance of the output amplifier can change, resulting in a small imbalance. When driven in differential mode by two identical amplifiers, this impedance change will be the same for both lines, and thus cancelled out.
Internally balanced audio design
Professional audio products (recording, public address, etc.) generally provide balanced inputs and outputs, typically via
XLR or
TRS phone connector
A phone connector, also known as phone jack, audio jack, headphone jack or jack plug, is a family of electrical connectors typically used for analog audio signals. A plug, the male connector, is inserted into the jack, the female connecto ...
s. However, in most cases, the internal circuitry is entirely unbalanced.
A small number of audio products have been designed with an entirely balanced signal path from input to output; the circuitry maintains its impedance balance throughout the device. This design is achieved by providing identical (mirrored) internal signal paths for both the "hot" and "cold" conductors. In critical applications, a 100%
balanced circuit design can offer better
signal integrity
Signal integrity or SI is a set of measures of the quality of an electrical signal. In digital electronics, a stream of binary values is represented by a voltage (or current) waveform. However, digital signals are fundamentally analog in nature, ...
by avoiding the extra amplifier stages or
transformer
A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
s required for front-end unbalancing and back-end rebalancing.
Connectors
Three-pin
XLR connectors and quarter-inch (¼" or 6.35mm)
TRS phone connector
A phone connector, also known as phone jack, audio jack, headphone jack or jack plug, is a family of electrical connectors typically used for analog audio signals. A plug, the male connector, is inserted into the jack, the female connecto ...
s are commonly used for balanced audio interfaces. Many jacks are now designed to take either XLR or TRS phone plugs. Equipment intended for long-term installation sometimes uses
terminal strips or
Euroblock connectors.
Some balanced headphone connections also use a
Pentaconn
A phone connector, also known as phone jack, audio jack, headphone jack or jack plug, is a family of electrical connectors typically used for analog audio signals. A plug, the male connector, is inserted into the jack, the female connecto ...
4.4mm
TRRRS connector
A phone connector, also known as phone jack, audio jack, headphone jack or jack plug, is a family of electrical connectors typically used for analog audio signals. A plug, the male connector, is inserted into the jack, the female connecto ...
.
Image:trsconnectors.jpg, 2.5, 3.5 and 6.35mm TRS phone plugs
Image:Xlr-connectors.jpg, Three-pin XLR connectors, female on left and male on right
Image:XLR-phone jack combo connector.jpg, Three-pin XLR plus 6.35mm TRS phone hybrid jack.
With XLR connectors, pins 1, 2, and 3 are usually used for the shield (ideally connected to the chassis) and the two signal wires, respectively. (The phrase "ground, live, return", corresponding to "X, L, R", is often offered as a memory aid, although the second signal wire is not a "return" in the case of differential signaling) On TRS phone plugs, the tip is signal/non-inverting, the ring is return/inverting, and the sleeve is chassis ground.
If a
stereophonic or other
binaural
Binaural literally means "having or relating to two ears." Binaural hearing, along with frequency cues, lets humans and other animals determine the direction and origin of sounds. Similar to diotic which is used in psychophysics to describe an audi ...
signal is plugged into such a jack, one channel (usually the right) will be subtracted from the other (usually the left), leaving an unlistenable L − R (left minus right) signal instead of normal
monophonic L + R (left plus right). Reversing the
polarity
Polarity may refer to:
Science
* Electrical polarity, direction of electrical current
* Polarity (mutual inductance), the relationship between components such as transformer windings
* Polarity (projective geometry), in mathematics, a duality of o ...
at any other point in a balanced audio system will also result in this effect at some point when it is later mixed-down with its other channel.
Telephone lines also carry audio through balanced circuitry, though this is generally now limited to the
local loop
In telephony, the local loop (also referred to as the local tail, subscriber line, or in the aggregate as the last mile) is the physical link or circuit that connects from the demarcation point of the customer premises to the edge of the comm ...
. It is called this because the two wires form a balanced loop through which both sides of the
telephone call
A telephone call is a connection over a telephone network between the called party and the calling party.
First telephone call
The first telephone call was made on March 10, 1876, by Alexander Graham Bell. Bell demonstrated his ability to " ...
travel. As telephones require DC power to operate and to allow simple on/off hook detection, extra circuitry was developed where one signal wire is fed from the exchange power bus, typically −50 volts, and the other grounded, both via equal value inductors which have about 400 ohms DC resistance, to avoid short-circuiting the wanted AC signal and to maintain impedance balance.
Digital audio connections in professional environments are also frequently balanced, normally following the
AES3 (AES/EBU) standard. This uses XLR connectors and twisted-pair cable with 110-ohm impedance. By contrast, the coaxial
S/PDIF interface commonly seen on consumer equipment is unbalanced.
Converters
Balanced and unbalanced circuits can be interfaced by the use of a
balun, often through a
DI unit (also called a "DI box" or "direct box").
As a last resort a balanced audio line can be fed into an unbalanced input and vice versa as long as the electronic design used for the output stage is known. In the case of balanced output to unbalanced input, the negative output can be tied to ground, but in certain cases the negative output should be left disconnected.
See also
*
Differential pair
*
AES3
*
Phantom power
References
External links
UK Sound And Lighting Community — Article On Balanced LinesRay Rayburn: "Balanced-to-Unbalanced; How to Do it Right"
{{DEFAULTSORT:Balanced Audio
Audiovisual connectors
Microphones
Audio engineering
Sound recording
Sound reinforcement system
de:Symmetrische Signalübertragung
hu:Szimmetrikus audio vonal