Asteroids
   HOME

TheInfoList



OR:

An asteroid is a
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor ...
of the
inner Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. Of the roughly one million known asteroids the greatest number are located between the orbits of Mars and Jupiter, approximately 2 to 4 AU from the Sun, in the main
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called ...
. Asteroids are generally classified to be of three types: C-type, M-type, and S-type. These were named after and are generally identified with
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
aceous,
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
lic, and
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
ceous compositions, respectively. The size of asteroids varies greatly; the largest,
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
, is almost across and qualifies as a
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
. The total mass of all the asteroids combined is only 3% that of Earth's Moon. The majority of main belt asteroids follow slightly elliptical, stable orbits, revolving in the same direction as the Earth and taking from three to six years to complete a full circuit of the Sun. Asteroids have been historically observed from Earth; the '' Galileo'' spacecraft provided the first close observation of an asteroid. Several dedicated missions to asteroids were subsequently launched by
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
and
JAXA The is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orb ...
, with plans for other missions in progress. NASA's ''
NEAR Shoemaker ''Near Earth Asteroid Rendezvous – Shoemaker'' (''NEAR Shoemaker''), renamed after its 1996 launch in honor of planetary scientist Eugene Shoemaker, was a robotic space probe designed by the Johns Hopkins University Applied Physics Labora ...
'' studied
Eros In Greek mythology, Eros (, ; grc, Ἔρως, Érōs, Love, Desire) is the Greek god of love and sex. His Roman counterpart was Cupid ("desire").''Larousse Desk Reference Encyclopedia'', The Book People, Haydock, 1995, p. 215. In the ear ...
, and ''
Dawn Dawn is the time that marks the beginning of twilight before sunrise. It is recognized by the appearance of indirect sunlight being scattered in Earth's atmosphere, when the centre of the Sun's disc has reached 18° below the observer's hori ...
'' observed Vesta and
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
. JAXA's missions ''
Hayabusa was a robotic spacecraft developed by the Japan Aerospace Exploration Agency (JAXA) to return a sample of material from a small near-Earth asteroid named 25143 Itokawa to Earth for further analysis. ''Hayabusa'', formerly known as MUSES-C fo ...
'' and '' Hayabusa2'' studied and returned samples of Itokawa and Ryugu, respectively.
OSIRIS-REx OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) is a NASA asteroid-study and sample-return mission. The mission's primary goal is to obtain a sample of at least from 101955 Bennu, a carbona ...
studied
Bennu Bennu is an ancient Egyptian deity linked with the Sun, creation, and rebirth. He may have been the original inspiration for the phoenix legends that developed in Greek mythology. Roles According to Egyptian mythology, Bennu was a self-create ...
, collecting a sample in 2020 to be delivered back to Earth in 2023. ''
Lucy Lucy is an English feminine given name derived from the Latin masculine given name Lucius with the meaning ''as of light'' (''born at dawn or daylight'', maybe also ''shiny'', or ''of light complexion''). Alternative spellings are Luci, Luce, Lu ...
'', launched in 2021, has an itinerary including eight different asteroids, one from the
main belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called ...
and seven Jupiter trojans. ''
Psyche Psyche (''Psyché'' in French) is the Greek term for "soul" (ψυχή). Psyche may also refer to: Psychology * Psyche (psychology), the totality of the human mind, conscious and unconscious * ''Psyche'', an 1846 book about the unconscious by Car ...
'', to be launched in 2023 or 2024, will study a metallic asteroid of the same name. Near-Earth asteroids can threaten all life on the planet; an asteroid
impact event An impact event is a collision between astronomical objects causing measurable effects. Impact events have physical consequences and have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or me ...
resulted in the Cretaceous–Paleogene extinction. Different asteroid deflection strategies have been proposed; the
Double Asteroid Redirection Test Double Asteroid Redirection Test (DART) is a NASA space mission aimed at testing a method of planetary defense against near-Earth objects (NEOs). It was designed to assess how much a spacecraft impact deflects an asteroid through its transfe ...
spacecraft, or DART, was launched in 2021 and intentionally impacted
Dimorphos (65803) Didymos I Dimorphos (provisional designation S/2003 (65803) 1) is a minor-planet moon of the near-Earth asteroid 65803 Didymos, with which it forms a binary system. It has a diameter of and has been characterised as a low-density rubb ...
in September 2022, successfully altering its orbit by crashing into it.


History of observations

Only one asteroid, 4 Vesta, which has a relatively reflective surface, is normally visible to the naked eye. When favorably positioned, 4 Vesta can be seen in dark skies. Rarely, small asteroids passing close to Earth may be visible to the naked eye for a short time. , the
Minor Planet Center The Minor Planet Center (MPC) is the official body for observing and reporting on minor planets under the auspices of the International Astronomical Union (IAU). Founded in 1947, it operates at the Smithsonian Astrophysical Observatory. Function ...
had data on 1,199,224 minor planets in the inner and outer Solar System, of which about 614,690 had enough information to be given numbered designations.


Discovery of Ceres

In 1772, German astronomer
Johann Elert Bode Johann Elert Bode (; 19 January 1747 – 23 November 1826) was a German astronomer known for his reformulation and popularisation of the Titius–Bode law. Bode determined the orbit of Uranus and suggested the planet's name. Life and career Bo ...
, citing
Johann Daniel Titius Johann Daniel Titius (born Johann Daniel Tietz(e), 2 January 1729 – 16 December 1796) was a German astronomer and a professor at Wittenberg.
, published a numerical procession known as the
Titius–Bode law The Titius–Bode law (sometimes termed just Bode's law) is a formulaic prediction of spacing between planets in any given solar system. The formula suggests that, extending outward, each planet should be approximately twice as far from the Sun as ...
(now discredited). Except for an unexplained gap between Mars and Jupiter, Bode's formula seemed to predict the orbits of the known planets. He wrote the following explanation for the existence of a "missing planet":
This latter point seems in particular to follow from the astonishing relation which the known six planets observe in their distances from the Sun. Let the distance from the Sun to Saturn be taken as 100, then Mercury is separated by 4 such parts from the Sun. Venus is 4 + 3 = 7. The Earth 4 + 6 = 10. Mars 4 + 12 = 16. Now comes a gap in this so orderly progression. After Mars there follows a space of 4 + 24 = 28 parts, in which no planet has yet been seen. Can one believe that the Founder of the universe had left this space empty? Certainly not. From here we come to the distance of Jupiter by 4 + 48 = 52 parts, and finally to that of Saturn by 4 + 96 = 100 parts.
Bode's formula predicted another planet would be found with an orbital radius near 2.8
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbits t ...
s (AU), or 420 million km, from the Sun. The Titius–Bode law got a boost with
William Herschel Frederick William Herschel (; german: Friedrich Wilhelm Herschel; 15 November 1738 – 25 August 1822) was a German-born British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline ...
's discovery of
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus (mythology), Uranus (Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars (mythology), Mars), grandfather ...
near the predicted distance for a planet beyond
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
. In 1800, a group headed by
Franz Xaver von Zach Baron Franz Xaver von Zach (''Franz Xaver Freiherr von Zach''; 4 June 1754 – 2 September 1832) was a Hungarian astronomer born at Pest, Hungary (now Budapest in Hungary). Biography Zach studied physics at the Royal University of Pest, and s ...
, editor of the German astronomical journal ''Monatliche Correspondenz'' (Monthly Correspondence), sent requests to 24 experienced astronomers (whom he dubbed the "
celestial police The celestial police (german: Himmelspolizey), officially the United Astronomical Society (german: Vereinigte Astronomische Gesellschaft, VAG), were an informal group of astronomers working in the early 19th century with the express purpose of f ...
"), asking that they combine their efforts and begin a methodical search for the expected planet. Although they did not discover Ceres, they later found the asteroids 2 Pallas, 3 Juno and 4 Vesta. One of the astronomers selected for the search was
Giuseppe Piazzi Giuseppe Piazzi ( , ; 16 July 1746 – 22 July 1826) was an Italian Catholic priest of the Theatine order, mathematician, and astronomer. He established an observatory at Palermo, now the '' Osservatorio Astronomico di Palermo – Giuseppe S ...
, a Catholic priest at the Academy of Palermo, Sicily. Before receiving his invitation to join the group, Piazzi discovered Ceres on 1 January 1801. He was searching for "the 87th
tar Tar is a dark brown or black viscous liquid of hydrocarbons and free carbon, obtained from a wide variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, or peat. "a dark brown or black bit ...
of the Catalogue of the Zodiacal stars of Mr la Caille", but found that "it was preceded by another". Instead of a star, Piazzi had found a moving star-like object, which he first thought was a comet:
The light was a little faint, and of the colour of
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
, but similar to many others which generally are reckoned of the eighth
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
. Therefore I had no doubt of its being any other than a fixed star. ..The evening of the third, my suspicion was converted into certainty, being assured it was not a fixed star. Nevertheless before I made it known, I waited till the evening of the fourth, when I had the satisfaction to see it had moved at the same rate as on the preceding days.
Piazzi observed Ceres a total of 24 times, the final time on 11 February 1801, when illness interrupted his work. He announced his discovery on 24 January 1801 in letters to only two fellow astronomers, his compatriot
Barnaba Oriani Barnaba Oriani Royal Society of London, FRS FRSE (17 July 1752 – 12 November 1832) was an Italian priest, geodesist, astronomer and scientist. Life Oriani was born in Garegnano (now part of Milan), the son of a mason, and died in Milan. A ...
of Milan and Bode in Berlin. He reported it as a comet but "since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet". In April, Piazzi sent his complete observations to Oriani, Bode, and French astronomer
Jérôme Lalande Joseph Jérôme Lefrançois de Lalande (; 11 July 1732 – 4 April 1807) was a French astronomer, freemason and writer. Biography Lalande was born at Bourg-en-Bresse (now in the département of Ain) to Pierre Lefrançois and Marie‐Anne‐Gab ...
. The information was published in the September 1801 issue of the ''Monatliche Correspondenz''. By this time, the apparent position of Ceres had changed (mostly due to Earth's motion around the Sun), and was too close to the Sun's glare for other astronomers to confirm Piazzi's observations. Toward the end of the year, Ceres should have been visible again, but after such a long time it was difficult to predict its exact position. To recover Ceres, mathematician
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
, then 24 years old, developed an efficient method of
orbit determination Orbit determination is the estimation of orbits of objects such as moons, planets, and spacecraft. One major application is to allow tracking newly observed asteroids and verify that they have not been previously discovered. The basic methods wer ...
. In a few weeks, he predicted the path of Ceres and sent his results to von Zach. On 31 December 1801, von Zach and fellow celestial policeman Heinrich W. M. Olbers found Ceres near the predicted position and thus recovered it. At 2.8 AU from the Sun, Ceres appeared to fit the Titius–Bode law almost perfectly; however, Neptune, once discovered in 1846, was 8 AU closer than predicted, leading most astronomers to conclude that the law was a coincidence. Piazzi named the newly discovered object ''Ceres Ferdinandea,'' "in honor of the patron goddess of Sicily and of King Ferdinand of Bourbon".


Further search

Three other asteroids ( 2 Pallas, 3 Juno, and 4 Vesta) were discovered by von Zach's group over the next few years, with Vesta found in 1807. No new asteroids were discovered until 1845. Amateur astronomer
Karl Ludwig Hencke Karl Ludwig Hencke (8 April 1793 – 21 September 1866) was a German amateur astronomer and discoverer of minor planets. He is sometimes confused with Johann Franz Encke, another German astronomer. Biography Hencke was born in Driesen, Branden ...
started his searches of new asteroids in 1830, and fifteen years later, while looking for Vesta, he found the asteroid later named 5 Astraea. It was the first new asteroid discovery in 38 years.
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
was given the honour of naming the asteroid. After this, other astronomers joined; 15 asteroids were found by the end of 1851. In 1868, when
James Craig Watson James Craig Watson (January 28, 1838 – November 22, 1880) was a Canadian-American astronomer, discoverer of comets and minor planets, director of the University of Michigan's Detroit Observatory in Ann Arbor, and awarded with the Lalande Priz ...
discovered the 100th asteroid, the
French Academy of Sciences The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV of France, Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific me ...
engraved the faces of
Karl Theodor Robert Luther Karl Theodor Robert Luther (April 16, 1822, Świdnica – February 15, 1900 Düsseldorf), normally published as Robert Luther, was a German astronomer. While working at the Bilk Observatory in Düsseldorf, Germany, he searched for asteroids and ...
,
John Russell Hind John Russell Hind FRS FRSE LLD (12 May 1823 – 23 December 1895) was an English astronomer. Life and work John Russell Hind was born in 1823 in Nottingham, the son of lace manufacturer John Hind and Elizabeth Russell, and was educated at ...
, and
Hermann Goldschmidt Hermann Mayer Salomon Goldschmidt (June 17, 1802 – August 30 or September 10 1866) was a German-French astronomer and painter who spent much of his life in France. He started out as a painter, but after attending a lecture by the famous Fren ...
, the three most successful asteroid-hunters at that time, on a commemorative medallion marking the event. In 1891, Max Wolf pioneered the use of
astrophotography Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object (the Moon) was taken in 1840, but it was no ...
to detect asteroids, which appeared as short streaks on long-exposure photographic plates. This dramatically increased the rate of detection compared with earlier visual methods: Wolf alone discovered 248 asteroids, beginning with 323 Brucia, whereas only slightly more than 300 had been discovered up to that point. It was known that there were many more, but most astronomers did not bother with them, some calling them "vermin of the skies", a phrase variously attributed to
Eduard Suess Eduard Suess (; 20 August 1831 - 26 April 1914) was an Austrian geologist and an expert on the geography of the Alps. He is responsible for hypothesising two major former geographical features, the supercontinent Gondwana (proposed in 1861) and t ...
and
Edmund Weiss Edmund Weiss (26 August 1837 – 21 June 1917) was an Austrian astronomer. He was born in Frývaldov, Austrian Silesia, now Jeseník, Czech Silesia. His father, Josef Weiss (1795–1847), was a pioneer of hydrotherapy. His twin brother, Adolf Gus ...
. Even a century later, only a few thousand asteroids were identified, numbered and named.


19th and 20th centuries

In the past, asteroids were discovered by a four-step process. First, a region of the sky was photographed by a wide-field
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observe ...
, or
astrograph An astrograph (or astrographic camera) is a telescope designed for the sole purpose of astrophotography. Astrographs are mostly used in wide-field astronomical surveys of the sky and for detection of objects such as asteroids, meteors, a ...
. Pairs of photographs were taken, typically one hour apart. Multiple pairs could be taken over a series of days. Second, the two films or plates of the same region were viewed under a
stereoscope A stereoscope is a device for viewing a stereoscopic pair of separate images, depicting left-eye and right-eye views of the same scene, as a single three-dimensional image. A typical stereoscope provides each eye with a lens that makes the ima ...
. A body in orbit around the Sun would move slightly between the pair of films. Under the stereoscope, the image of the body would seem to float slightly above the background of stars. Third, once a moving body was identified, its location would be measured precisely using a digitizing microscope. The location would be measured relative to known star locations. These first three steps do not constitute asteroid discovery: the observer has only found an apparition, which gets a
provisional designation Provisional designation in astronomy is the naming convention applied to astronomical objects immediately following their discovery. The provisional designation is usually superseded by a permanent designation once a reliable orbit has been cal ...
, made up of the year of discovery, a letter representing the half-month of discovery, and finally a letter and a number indicating the discovery's sequential number (example: ). The last step is sending the locations and time of observations to the
Minor Planet Center The Minor Planet Center (MPC) is the official body for observing and reporting on minor planets under the auspices of the International Astronomical Union (IAU). Founded in 1947, it operates at the Smithsonian Astrophysical Observatory. Function ...
, where computer programs determine whether an apparition ties together earlier apparitions into a single orbit. If so, the object receives a catalogue number and the observer of the first apparition with a calculated orbit is declared the discoverer, and granted the honor of naming the object subject to the approval of the
International Astronomical Union The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
.


Naming

By 1851, the
Royal Astronomical Society (Whatever shines should be observed) , predecessor = , successor = , formation = , founder = , extinction = , merger = , merged = , type = NGO ...
decided that asteroids were being discovered at such a rapid rate that a different system was needed to categorize or name asteroids. In 1852, when de Gasparis discovered the twentieth asteroid,
Benjamin Valz Jean Elias Benjamin Valz (May 27, 1787 – April 22, 1867) was a French astronomer. He was born in Nîmes and trained as an engineer. He was the son of politician Jean Valz and the grandson of the doctor, meteorologist and naturalist Pierre ...
gave it a name and a number designating its rank among asteroid discoveries,
20 Massalia Massalia, minor planet designation 20 Massalia, is a stony asteroid and the parent body of the Massalia family located in the inner region of the asteroid belt, approximately in diameter. Discovered by Italian astronomer Annibale de Gasparis on ...
. Sometimes asteroids were discovered and not seen again. So, starting in 1892, new asteroids were listed by the year and a capital letter indicating the order in which the asteroid's orbit was calculated and registered within that specific year. For example, the first two asteroids discovered in 1892 were labeled 1892A and 1892B. However, there were not enough letters in the alphabet for all of the asteroids discovered in 1893, so 1893Z was followed by 1893AA. A number of variations of these methods were tried, including designations that included year plus a Greek letter in 1914. A simple chronological numbering system was established in 1925. Currently all newly discovered asteroids receive a
provisional designation Provisional designation in astronomy is the naming convention applied to astronomical objects immediately following their discovery. The provisional designation is usually superseded by a permanent designation once a reliable orbit has been cal ...
(such as ) consisting of the year of discovery and an alphanumeric code indicating the half-month of discovery and the sequence within that half-month. Once an asteroid's orbit has been confirmed, it is given a number, and later may also be given a name (e.g. ). The formal naming convention uses parentheses around the number – e.g. (433) Eros – but dropping the parentheses is quite common. Informally, it is also common to drop the number altogether, or to drop it after the first mention when a name is repeated in running text. In addition, names can be proposed by the asteroid's discoverer, within guidelines established by the International Astronomical Union.


Symbols

The first asteroids to be discovered were assigned iconic symbols like the ones traditionally used to designate the planets. By 1855 there were two dozen asteroid symbols, which often occurred in multiple variants. In 1851, after the fifteenth asteroid,
Eunomia In Greek mythology, Eunomia ( grc, Εὐνομία) was a minor goddess of law and legislation (her name can be translated as "good order", "governance according to good laws"), as well as the spring-time goddess of green pastures (''eû'' means ...
, had been discovered,
Johann Franz Encke Johann Franz Encke (; 23 September 179126 August 1865) was a German astronomer. Among his activities, he worked on the calculation of the periods of comets and asteroids, measured the distance from the Earth to the Sun, and made observations ...
made a major change in the upcoming 1854 edition of the '' Berliner Astronomisches Jahrbuch'' (BAJ, ''Berlin Astronomical Yearbook''). He introduced a disk (circle), a traditional symbol for a star, as the generic symbol for an asteroid. The circle was then numbered in order of discovery to indicate a specific asteroid. The numbered-circle convention was quickly adopted by astronomers, and the next asteroid to be discovered ( 16 Psyche, in 1852) was the first to be designated in that way at the time of its discovery. However, Psyche was given an iconic symbol as well, as were a few other asteroids discovered over the next few years.
20 Massalia Massalia, minor planet designation 20 Massalia, is a stony asteroid and the parent body of the Massalia family located in the inner region of the asteroid belt, approximately in diameter. Discovered by Italian astronomer Annibale de Gasparis on ...
was the first asteroid that was not assigned an iconic symbol, and no iconic symbols were created after the 1855 discovery of 37 Fides.


Terminology

The first discovered asteroid,
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
, was originally considered a new planet. It was followed by the discovery of other similar bodies, which with the equipment of the time appeared to be points of light like stars, showing little or no planetary disc, though readily distinguishable from stars due to their apparent motions. This prompted the astronomer
Sir William Herschel Frederick William Herschel (; german: Friedrich Wilhelm Herschel; 15 November 1738 – 25 August 1822) was a German-born British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline H ...
to propose the term "asteroid", coined in Greek as ἀστεροειδής, or ''asteroeidēs'', meaning 'star-like, star-shaped', and derived from the Ancient Greek ''astēr'' 'star, planet'. In the early second half of the 19th century, the terms "asteroid" and "planet" (not always qualified as "minor") were still used interchangeably. Traditionally, small bodies orbiting the Sun were classified as
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
s, asteroids, or
meteoroid A meteoroid () is a small rocky or metallic body in outer space. Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than this are classified as mi ...
s, with anything smaller than one meter across being called a meteoroid. The term "asteroid" never had a formal definition, with the broader term "
small Solar System bodies A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, ...
" being preferred by the
International Astronomical Union The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
(IAU). As no IAU definition exists, asteroid can be defined as "an irregularly shaped rocky body orbiting the Sun that does not qualify as a planet or a dwarf planet under the IAU definitions of those terms". When found, asteroids were seen as a class of objects distinct from comets, and there was no unified term for the two until "small Solar System body" was coined in 2006. The main difference between an asteroid and a comet is that a comet shows a coma due to sublimation of near-surface ices by solar radiation. A few objects have ended up being dual-listed because they were first classified as minor planets but later showed evidence of cometary activity. Conversely, some (perhaps all) comets are eventually depleted of their surface volatile ices and become asteroid-like. A further distinction is that comets typically have more eccentric orbits than most asteroids; "asteroids" with notably eccentric orbits are probably dormant or extinct comets. For almost two centuries, from the discovery of
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
in 1801 until the discovery of the first
centaur A centaur ( ; grc, κένταυρος, kéntauros; ), or occasionally hippocentaur, is a creature from Greek mythology with the upper body of a human and the lower body and legs of a horse. Centaurs are thought of in many Greek myths as being ...
, 2060 Chiron in 1977, all known asteroids spent most of their time at or within the orbit of Jupiter, though a few such as
944 Hidalgo 944 Hidalgo is a centaur and unusual object on an eccentric, cometary-like orbit between the asteroid belt and the outer Solar System, approximately in diameter. Discovered by German astronomer Walter Baade in 1920, it is the first member of t ...
ventured far beyond Jupiter for part of their orbit. When astronomers started finding more small bodies that permanently resided further out than Jupiter, now called
centaurs A centaur ( ; grc, κένταυρος, kéntauros; ), or occasionally hippocentaur, is a creature from Greek mythology with the upper body of a human and the lower body and legs of a horse. Centaurs are thought of in many Greek myths as being ...
, they numbered them among the traditional asteroids. There was debate over whether these objects should be considered asteroids or given a new classification. Then, when the first
trans-Neptunian object A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has a semi-major axis of 30.1 astronomical units (au). Typically ...
(other than
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest ...
), 15760 Albion, was discovered in 1992, and especially when large numbers of similar objects started turning up, new terms were invented to sidestep the issue:
Kuiper-belt object The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times ...
,
trans-Neptunian object A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has a semi-major axis of 30.1 astronomical units (au). Typically ...
, scattered-disc object, and so on. They inhabit the cold outer reaches of the Solar System where ices remain solid and comet-like bodies are not expected to exhibit much cometary activity; if centaurs or trans-Neptunian objects were to venture close to the Sun, their volatile ices would sublimate, and traditional approaches would classify them as comets and not asteroids. The innermost of these are the Kuiper-belt objects, called "objects" partly to avoid the need to classify them as asteroids or comets. They are thought to be predominantly comet-like in composition, though some may be more akin to asteroids. Furthermore, most do not have the highly eccentric orbits associated with comets, and the ones so far discovered are larger than traditional
comet nuclei The nucleus is the solid, central part of a comet, once termed a ''dirty snowball'' or an ''icy dirtball''. A cometary nucleus is composed of rock, dust, and frozen gases. When heated by the Sun, the gases sublime and produce an atmosphere s ...
. (The much more distant
Oort cloud The Oort cloud (), sometimes called the Öpik–Oort cloud, first described in 1950 by the Dutch astronomer Jan Oort, is a theoretical concept of a cloud of predominantly icy planetesimals proposed to surround the Sun at distances ranging from ...
is hypothesized to be the main reservoir of dormant comets.) Other recent observations, such as the analysis of the cometary dust collected by the ''Stardust'' probe, are increasingly blurring the distinction between comets and asteroids, suggesting "a continuum between asteroids and comets" rather than a sharp dividing line. The minor planets beyond Jupiter's orbit are sometimes also called "asteroids", especially in popular presentations. However, it is becoming increasingly common for the term "asteroid" to be restricted to minor planets of the inner Solar System. Therefore, this article will restrict itself for the most part to the classical asteroids: objects of the
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called ...
, Jupiter trojans, and
near-Earth object A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun (perihelion) is less than 1.3 astronomical units (AU). ...
s. When the IAU introduced the class
small Solar System bodies A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, ...
in 2006 to include most objects previously classified as minor planets and comets, they created the class of
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
s for the largest minor planets – those that have enough mass to have become ellipsoidal under their own gravity. According to the IAU, "the term 'minor planet' may still be used, but generally, the term 'Small Solar System Body' will be preferred." Currently only the largest object in the asteroid belt,
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
, at about across, has been placed in the dwarf planet category.


Formation

Many asteroids are the shattered remnants of
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
s, bodies within the young Sun's
solar nebula The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a ...
that never grew large enough to become
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s. It is thought that planetesimals in the asteroid belt evolved much like the rest of objects in the solar nebula until Jupiter neared its current mass, at which point excitation from
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
s with Jupiter ejected over 99% of planetesimals in the belt. Simulations and a discontinuity in spin rate and spectral properties suggest that asteroids larger than approximately in diameter accreted during that early era, whereas smaller bodies are fragments from collisions between asteroids during or after the Jovian disruption. Ceres and Vesta grew large enough to melt and differentiate, with heavy metallic elements sinking to the core, leaving rocky minerals in the crust. In the
Nice model The Nice () model is a scenario for the dynamical evolution of the Solar System. It is named for the location of the Côte d'Azur Observatory—where it was initially developed in 2005—in Nice, France. It proposes the migration of the giant ...
, many Kuiper-belt objects are captured in the outer asteroid belt, at distances greater than 2.6 AU. Most were later ejected by Jupiter, but those that remained may be the
D-type asteroid D-type asteroids have a very low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interiors. D-type asteroids ...
s, and possibly include Ceres.


Distribution within the Solar System

Various dynamical groups of asteroids have been discovered orbiting in the inner Solar System. Their orbits are perturbed by the gravity of other bodies in the Solar System and by the
Yarkovsky effect The Yarkovsky effect is a force acting on a rotating body in space caused by the anisotropic emission of thermal photons, which carry momentum. It is usually considered in relation to meteoroids or small asteroids (about 10 cm to 10  ...
. Significant populations include:


Asteroid belt

The majority of known asteroids orbit within the asteroid belt between the orbits of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
and
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
, generally in relatively low-
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
(i.e. not very elongated) orbits. This belt is estimated to contain between 1.1 and 1.9 million asteroids larger than in diameter, and millions of smaller ones. These asteroids may be remnants of the
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, be ...
, and in this region the accretion of
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
s into planets during the formative period of the Solar System was prevented by large gravitational perturbations by
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
. Contrary to popular imagery, the asteroid belt is mostly empty. The asteroids are spread over such a large volume that reaching an asteroid without aiming carefully would be improbable. Nonetheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more, depending on the lower size cutoff. Over 200 asteroids are known to be larger than 100 km, and a survey in the infrared wavelengths has shown that the asteroid belt has between 700,000 and 1.7 million asteroids with a diameter of 1 km or more. The
absolute magnitude Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse Logarithmic scale, logarithmic Magnitude (astronomy), astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent mag ...
s of most of the known asteroids are between 11 and 19, with the median at about 16. The total mass of the asteroid belt is estimated to be kg, which is just 3% of the mass of the Moon; the mass of the Kuiper Belt and Scattered Disk is over 100 times as large. The four largest objects, Ceres, Vesta, Pallas, and Hygiea, account for maybe 62% of the belt's total mass, with 39% accounted for by Ceres alone.


Trojans

Trojans are populations that share an orbit with a larger planet or moon, but do not collide with it because they orbit in one of the two Lagrangian points of stability, and , which lie 60° ahead of and behind the larger body. In the Solar System, most known trojans share the orbit of Jupiter. They are divided into the Greek camp at (ahead of Jupiter) and the
Trojan camp This is a list of Jupiter trojans that lie in the Trojan camp, an elongated curved region around the trailing Lagrangian point, 60° behind Jupiter. All the asteroids at the trailing point have names corresponding to participants on the Troj ...
at (trailing Jupiter). More than a million Jupiter trojans larger than one kilometer are thought to exist, of which more than 7,000 are currently catalogued. In other planetary orbits only nine Mars trojans, 28 Neptune trojans, two Uranus trojans, and two
Earth trojan An Earth trojan is an asteroid that orbits the Sun in the vicinity of the Earth–Sun Lagrangian points (leading 60°) or (trailing 60°), thus having an orbit similar to Earth's. Only two Earth trojans have so far been discovered. The name " ...
s, have been found to date. A temporary Venus trojan is also known. Numerical orbital dynamics stability simulations indicate that Saturn and Uranus probably do not have any primordial trojans.


Near-Earth asteroids

Near-Earth asteroids, or NEAs, are asteroids that have orbits that pass close to that of Earth. Asteroids that actually cross Earth's orbital path are known as ''Earth-crossers''. , a total of 28,772 near-Earth asteroids were known; 878 have a diameter of one kilometer or larger. A small number of NEAs are
extinct comets An extinct comet is a comet that has expelled most of its volatile ice and has little left to form a tail and coma. In a dormant comet, rather than being depleted, any remaining volatile components have been sealed beneath an inactive surface la ...
that have lost their volatile surface materials, although having a faint or intermittent comet-like tail does not necessarily result in a classification as a near-Earth comet, making the boundaries somewhat fuzzy. The rest of the near-Earth asteroids are driven out of the asteroid belt by gravitational interactions with
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
. Many asteroids have
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons'' ...
s (
minor-planet moon A minor-planet moon is an astronomical object that orbits a minor planet as its natural satellite. , there are 457 minor planets known or suspected to have moons. Discoveries of minor-planet moons (and binary objects, in general) are importan ...
s). , there were 85 NEAs known to have at least one moon, including three known to have two moons. The asteroid 3122 Florence, one of the largest potentially hazardous asteroids with a diameter of , has two moons measuring across, which were discovered by radar imaging during the asteroid's 2017 approach to Earth. Near-Earth asteroids are divided into groups based on their semi-major axis (a),
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
distance (q), and
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any ell ...
distance (Q): * The '' Atiras'' or ''Apoheles'' have orbits strictly inside Earth's orbit: an Atira asteroid's aphelion distance (Q) is smaller than Earth's perihelion distance (0.983 AU). That is, , which implies that the asteroid's semi-major axis is also less than 0.983 AU. * The ''
Atens The Aten asteroids are a dynamical group of asteroids whose orbits bring them into proximity with Earth. By definition, Atens are Earth-crossing asteroids . The group is named after 2062 Aten, the first of its kind, discovered on 7 Januar ...
'' have a semi-major axis of less than 1 AU and cross Earth's orbit. Mathematically, and . (0.983 AU is Earth's perihelion distance.) * The ''Apollo asteroid, Apollos'' have a semi-major axis of more than 1 AU and cross Earth's orbit. Mathematically, and . (1.017 AU is Earth's aphelion distance.) * The ''Amor asteroid, Amors'' have orbits strictly outside Earth's orbit: an Amor asteroid's perihelion distance (q) is greater than Earth's aphelion distance (1.017 AU). Amor asteroids are also near-earth objects so . In summary, . (This implies that the asteroid's semi-major axis (a) is also larger than 1.017 AU.) Some Amor asteroid orbits cross the orbit of Mars.


Martian moons

It is unclear whether Martian moons Phobos and Deimos are captured asteroids or were formed due to impact event on Mars.Burns, Joseph A. (1992). "Contradictory Clues as to the Origin of the Martian Moons" in ''Mars'', H. H. Kieffer et al., eds., Tucson: University of Arizona Press, Tucson Phobos and Deimos both have much in common with carbonaceous C-type asteroids, with electromagnetic spectrum, spectra, albedo, and density very similar to those of C- or D-type asteroids. Based on their similarity, one hypothesis is that both moons may be captured main-belt asteroids.Landis, Geoffrey A.; "Origin of Martian Moons from Binary Asteroid Dissociation", ''American Association for the Advancement of Science Annual Meeting''; Boston, MA, 2001
abstract
/ref> Both moons have very circular orbits which lie almost exactly in Mars's equatorial plane, and hence a capture origin requires a mechanism for circularizing the initially highly eccentric orbit, and adjusting its inclination into the equatorial plane, most probably by a combination of atmospheric drag and tidal forces, although it is not clear whether sufficient time was available for this to occur for Deimos. Capture also requires dissipation of energy. The current Martian atmosphere is too thin to capture a Phobos-sized object by atmospheric braking. Geoffrey A. Landis has pointed out that the capture could have occurred if the original body was a binary asteroid that separated under tidal forces. Phobos could be a second-generation Solar System object that Accretion (astrophysics), coalesced in orbit after Mars formed, rather than forming concurrently out of the same birth cloud as Mars. Another hypothesis is that Mars was once surrounded by many Phobos- and Deimos-sized bodies, perhaps ejected into orbit around it by a collision with a large
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
.Craddock, Robert A.; (1994); "The Origin of Phobos and Deimos", ''Abstracts of the 25th Annual Lunar and Planetary Science Conference, held in Houston, TX, 14–18 March 1994'', p. 293 The high porosity of the interior of Phobos (based on the density of 1.88 g/cm3, voids are estimated to comprise 25 to 35 percent of Phobos's volume) is inconsistent with an asteroidal origin. Observations of Phobos in the thermal infrared suggest a composition containing mainly phyllosilicates, which are well known from the surface of Mars. The spectra are distinct from those of all classes of chondrite meteorites, again pointing away from an asteroidal origin. Both sets of findings support an origin of Phobos from material ejected by an impact on Mars that reaccreted in Martian orbit, similar to the Giant impact hypothesis, prevailing theory for the origin of Earth's moon.


Characteristics


Size distribution

Asteroids vary greatly in size, from almost for the largest down to rocks just 1 meter across, below which an object is classified as a
meteoroid A meteoroid () is a small rocky or metallic body in outer space. Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than this are classified as mi ...
. The three largest are very much like miniature planets: they are roughly spherical, have at least partly differentiated interiors, and are thought to be surviving protoplanets. The vast majority, however, are much smaller and are irregularly shaped; they are thought to be either battered
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
s or fragments of larger bodies. The
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
is by far the largest asteroid, with a diameter of . The next largest are 4 Vesta and 2 Pallas, both with diameters of just over . Vesta is the brightest of the four main-belt asteroids that can, on occasion, be visible to the naked eye. On some rare occasions, a near-Earth asteroid may briefly become visible without technical aid; see 99942 Apophis. The mass of all the objects of the
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called ...
, lying between the orbits of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
and
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
, is estimated to be , ≈ 3.25% of the mass of the Moon. Of this,
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
comprises , about 40% of the total. Adding in the next three most massive objects, Vesta (11%), 2 Pallas, Pallas (8.5%), and 10 Hygiea, Hygiea (3–4%), brings this figure up to a bit over 60%, whereas the next seven most-massive asteroids bring the total up to 70%. The number of asteroids increases rapidly as their individual masses decrease. The number of asteroids decreases markedly with increasing size. Although the size distribution generally follows a power law, there are 'bumps' at about and , where more asteroids than expected from such a curve are found. Most asteroids larger than approximately 120 km in diameter are primordial (surviving from the accretion epoch), whereas most smaller asteroids are products of fragmentation of primordial asteroids. The primordial population of the main belt was probably 200 times what it is today.


Largest asteroids

Three largest objects in the asteroid belt,
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
, Vesta, and 2 Pallas, Pallas, are intact protoplanets that share many characteristics common to planets, and are atypical compared to the majority of irregularly shaped asteroids. The fourth-largest asteroid, 10 Hygiea, Hygiea, appears nearly spherical although it may have an undifferentiated interior, like the majority of asteroids. The four largest asteroids constitute half the mass of the asteroid belt. Ceres is the only asteroid that appears to have a Plasticity (physics), plastic shape under its own gravity and hence the only one that is a
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
. It has a much higher Absolute magnitude#Solar System bodies (H), absolute magnitude than the other asteroids, of around 3.32, and may possess a surface layer of ice. Like the planets, Ceres is differentiated: it has a crust, a mantle and a core. No meteorites from Ceres have been found on Earth. Vesta, too, has a differentiated interior, though it formed inside the Solar System's Frost line (astrophysics), frost line, and so is devoid of water; its composition is mainly of basaltic rock with minerals such as olivine. Aside from the large crater at its southern pole, Rheasilvia, Vesta also has an ellipsoidal shape. Vesta is the parent body of the Vestian family and other V-type asteroids, and is the source of the HED meteorites, which constitute 5% of all meteorites on Earth. Pallas is unusual in that, like
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus (mythology), Uranus (Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars (mythology), Mars), grandfather ...
, it rotates on its side, with its axis of rotation tilted at high angles to its orbital plane. Its composition is similar to that of Ceres: high in carbon and silicon, and perhaps partially differentiated. Pallas is the parent body of the Palladian family of asteroids. Hygiea is the largest carbonaceous asteroid and, unlike the other largest asteroids, lies relatively close to the plane of the ecliptic. It is the largest member and presumed parent body of the Hygiean family of asteroids. Because there is no sufficiently large crater on the surface to be the source of that family, as there is on Vesta, it is thought that Hygiea may have been completely disrupted in the collision that formed the Hygiean family and recoalesced after losing a bit less than 2% of its mass. Observations taken with the Very Large Telescope's VLT-SPHERE, SPHERE imager in 2017 and 2018, revealed that Hygiea has a nearly spherical shape, which is consistent both with it being in hydrostatic equilibrium, or formerly being in hydrostatic equilibrium, or with being disrupted and recoalescing. Internal differentiation of large asteroids is possibly related to their lack of
natural satellite A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons'' ...
s, as satellites of main belt asteroids are mostly believed to form from collisional disruption, creating a rubble pile structure.


Rotation

Measurements of the rotation rates of large asteroids in the asteroid belt show that there is an upper limit. Very few asteroids with a diameter larger than 100 meters have a rotation period less than 2.2 hours. For asteroids rotating faster than approximately this rate, the inertial force at the surface is greater than the gravitational force, so any loose surface material would be flung out. However, a solid object should be able to rotate much more rapidly. This suggests that most asteroids with a diameter over 100 meters are rubble piles formed through the accumulation of debris after collisions between asteroids.


Color

Asteroids become darker and redder with age due to space weathering. However evidence suggests most of the color change occurs rapidly, in the first hundred thousand years, limiting the usefulness of spectral measurement for determining the age of asteroids.


Surface features

Except for the "List of exceptional asteroids#Largest by mass, big four" (Ceres, Pallas, Vesta, and Hygiea), asteroids are likely to be broadly similar in appearance, if irregular in shape. 50 km (31 mi) 253 Mathilde is a rubble pile saturated with craters with diameters the size of the asteroid's radius. Earth-based observations of 300 km (186 mi) 511 Davida, one of the largest asteroids after the big four, reveal a similarly angular profile, suggesting it is also saturated with radius-size craters. Medium-sized asteroids such as Mathilde and 243 Ida, that have been observed up close, also reveal a deep regolith covering the surface. Of the big four, Pallas and Hygiea are practically unknown. Vesta has compression fractures encircling a radius-size crater at its south pole but is otherwise a spheroid. ''Dawn (spacecraft), Dawn spacecraft'' revealed that Ceres has a heavily cratered surface, but with fewer large craters than expected. Models based on the formation of the current asteroid belt had suggested Ceres should possess 10 to 15 craters larger than in diameter. The largest confirmed crater on Ceres, Kerwan (crater), Kerwan Basin, is across. The most likely reason for this is Viscoelasticity, viscous relaxation of the crust slowly flattening out larger impacts.


Composition

Asteroids are classified by their characteristic Emission spectrum, emission spectra, with the majority falling into three main groups: C-type, M-type, and S-type. These were named after and are generally identified with carbonaceous (Carbon, carbon-rich),
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
lic, and
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
ceous (stony) compositions, respectively. The physical composition of asteroids is varied and in most cases poorly understood. Ceres appears to be composed of a rocky core covered by an icy mantle, where Vesta is thought to have a nickel-iron core, olivine mantle, and basaltic crust. Thought to be the largest undifferentiated asteroid, 10 Hygiea seems to have a uniformly primitive composition of carbonaceous chondrite, but it may actually be a differentiated asteroid that was globally disrupted by an impact and then reassembled. Other asteroids appear to be the remnant cores or mantles of proto-planets, high in rock and metal. Most small asteroids are believed to be piles of rubble held together loosely by gravity, although the largest are probably solid. Some asteroids have Asteroid moon, moons or are co-orbiting binary asteroid, binaries: rubble piles, moons, binaries, and scattered asteroid family, asteroid families are thought to be the results of collisions that disrupted a parent asteroid, or possibly a disrupted planet, planet. In the main asteroid belt, there appear to be two primary populations of asteroid: a dark, volatile-rich population, consisting of the C-type and P-type asteroid, P-type asteroids, with albedos less that 0.10 and densities under , and a dense, volatile-poor population, consisting of the S-type and M-type asteroids, with albedos over 0.15 and densities greater than 2.7. Within these populations, larger asteroids are denser, presumably due to compression. There appears to be minimal macro-porosity (interstitial vacuum) in the score of asteroids with masses greater than .P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. ''Astronomy & Astrophysics'' 54, A56 Composition is calculated from three primary sources: albedo, surface spectrum, and density. The last can only be determined accurately by observing the orbits of moons the asteroid might have. So far, every asteroid with moons has turned out to be a rubble pile, a loose conglomeration of rock and metal that may be half empty space by volume. The investigated asteroids are as large as 280 km in diameter, and include 121 Hermione (268×186×183 km), and 87 Sylvia (384×262×232 km). Few asteroids are List of notable asteroids#Largest by diameter, larger than 87 Sylvia, none of them have moons. The fact that such large asteroids as Sylvia may be rubble piles, presumably due to disruptive impacts, has important consequences for the formation of the Solar System: computer simulations of collisions involving solid bodies show them destroying each other as often as merging, but colliding rubble piles are more likely to merge. This means that the cores of the planets could have formed relatively quickly.


Water

Scientists hypothesize that some of the first water brought to Earth was delivered by asteroid impacts after the collision that produced the Moon. In 2009, the presence of ice, water ice was confirmed on the surface of 24 Themis using NASA's Infrared Telescope Facility. The surface of the asteroid appears completely covered in ice. As this ice layer is Sublimation (phase transition), sublimating, it may be getting replenished by a reservoir of ice under the surface. Organic compounds were also detected on the surface. The presence of ice on 24 Themis makes the initial theory plausible. In October 2013, water was detected on an extrasolar body for the first time, on an asteroid orbiting the white dwarf GD 61. On 22 January 2014, European Space Agency (ESA) scientists reported the detection, for the first definitive time, of water vapor on
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
, the largest object in the asteroid belt. The detection was made by using the Far-infrared astronomy, far-infrared abilities of the Herschel Space Observatory. The finding is unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids." Findings have shown that solar winds can react with the oxygen in the upper layer of the asteroids and create water. It has been estimated that "every cubic metre of irradiated rock could contain up to 20 litres"; study was conducted using an atom probe tomography, numbers are given for the Itokawa S-type asteroid. Acfer 049, a meteorite discovered in Algeria in 1990, was shown in 2019 to have an ultraporous lithology (UPL): porous texture that could be formed by removal of ice that filled these pores, this suggests that UPL "represent fossils of primordial ice".


Organic compounds

Asteroids contain traces of amino acids and other organic compounds, and some speculate that asteroid impacts may have seeded the early Earth with the chemicals necessary to initiate life, or may have even brought life itself to Earth (an event called "panspermia"). In August 2011, a report, based on
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
studies with meteorites found on Earth, was published suggesting DNA and RNA components (adenine, guanine and related organic molecules) may have been formed on asteroids and
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
s in outer space. In November 2019, scientists reported detecting, for the first time, Sugar, sugar molecules, including ribose, in meteorites, suggesting that chemical processes on asteroids can produce some fundamentally essential bio-ingredients important to life, and supporting the notion of an RNA world prior to a DNA-based Abiogenesis, origin of life on Earth, and possibly, as well, the notion of panspermia.


Classification

Asteroids are commonly categorized according to two criteria: the characteristics of their orbits, and features of their reflectance visible spectrum, spectrum.


Orbital classification

Many asteroids have been placed in groups and families based on their orbital characteristics. Apart from the broadest divisions, it is customary to name a group of asteroids after the first member of that group to be discovered. Groups are relatively loose dynamical associations, whereas families are tighter and result from the catastrophic break-up of a large parent asteroid sometime in the past. Families are more common and easier to identify within the main asteroid belt, but several small families have been reported among the Jupiter trojans. Main belt families were first recognized by Kiyotsugu Hirayama in 1918 and are often called Hirayama families in his honor. About 30–35% of the bodies in the asteroid belt belong to dynamical families, each thought to have a common origin in a past collision between asteroids. A family has also been associated with the plutoid
dwarf planet A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to ...
. Some asteroids have unusual horseshoe orbits that are co-orbital with Earth or another planet. Examples are 3753 Cruithne and . The first instance of this type of orbital arrangement was discovered between
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
's moons Epimetheus (moon), Epimetheus and Janus (moon), Janus. Sometimes these horseshoe objects temporarily become quasi-satellites for a few decades or a few hundred years, before returning to their earlier status. Both Earth and Venus are known to have quasi-satellites. Such objects, if associated with Earth or Venus or even hypothetically Mercury (planet), Mercury, are a special class of Aten asteroids. However, such objects could be associated with the outer planets as well.


Spectral classification

In 1975, an asteroid Taxonomy (general), taxonomic system based on color, albedo, and spectral line, spectral shape was developed by Clark R. Chapman, Chapman, David Morrison (astrophysicist), Morrison, and Ben Zellner, Zellner. These properties are thought to correspond to the composition of the asteroid's surface material. The original classification system had three categories: C-type asteroid, C-types for dark carbonaceous objects (75% of known asteroids), S-type asteroid, S-types for stony (silicaceous) objects (17% of known asteroids) and U for those that did not fit into either C or S. This classification has since been expanded to include many other asteroid types. The number of types continues to grow as more asteroids are studied. The two most widely used taxonomies now used are the Tholen classification and SMASS classification. The former was proposed in 1984 by David J. Tholen, and was based on data collected from an eight-color asteroid survey performed in the 1980s. This resulted in 14 asteroid categories. In 2002, the Small Main-Belt Asteroid Spectroscopic Survey resulted in a modified version of the Tholen taxonomy with 24 different types. Both systems have three broad categories of C, S, and X asteroids, where X consists of mostly metallic asteroids, such as the M-type. There are also several smaller classes. The proportion of known asteroids falling into the various spectral types does not necessarily reflect the proportion of all asteroids that are of that type; some types are easier to detect than others, biasing the totals.


Problems

Originally, spectral designations were based on inferences of an asteroid's composition. However, the correspondence between spectral class and composition is not always very good, and a variety of classifications are in use. This has led to significant confusion. Although asteroids of different spectral classifications are likely to be composed of different materials, there are no assurances that asteroids within the same taxonomic class are composed of the same (or similar) materials.


Active asteroids

Active asteroids are objects that have asteroid-like orbits but show
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
-like visual characteristics. That is, they show Coma (cometary), comae, comet tail, tails, or other visual evidence of mass-loss (like a comet), but their orbit remains within
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
's orbit (like an asteroid). These bodies were originally designated main-belt comets (MBCs) in 2006 by astronomers David Jewitt and Henry Hsieh, but this name implies they are necessarily icy in composition like a comet and that they only exist within the asteroid belt, main-belt, whereas the growing population of active asteroids shows that this is not always the case. The first active asteroid discovered is 7968 Elst–Pizarro. It was discovered (as an asteroid) in 1979 but then was found to have a tail by Eric Walter Elst, Eric Elst and Guido Pizarro in 1996 and given the cometary designation 133P/Elst-Pizarro. Another notable object is 311P/PanSTARRS: observations made by the Hubble Space Telescope revealed that it had six comet-like tails. The tails are suspected to be streams of material ejected by the asteroid as a result of a rubble pile asteroid spinning fast enough to remove material from it.


Exploration

Until the age of space travel, objects in the asteroid belt could only be observed with large telescopes, their shapes and terrain remaining a mystery. The best modern ground-based telescopes and the Earth-orbiting Hubble Space Telescope can only resolve a small amount of detail on the surfaces of the largest asteroids. Limited information about the shapes and compositions of asteroids can be inferred from their light curves (variation in brightness during rotation) and their spectral properties. Sizes can be estimated by timing the lengths of star occultations (when an asteroid passes directly in front of a star). Radar imaging can yield good information about asteroid shapes and orbital and rotational parameters, especially for near-Earth asteroids. Spacecraft flybys can provide much more data than any ground or space-based observations; sample-return missions gives insights about regolith composition.


Ground-based observations

As asteroids are rather small and faint objects, the data that can be obtained from ground-based observations (GBO) are limited. By means of ground-based optical telescopes the visual magnitude can be obtained; when converted into the absolute magnitude it gives a rough estimate of the asteroid's size. Light-curve measurements can also be made by GBO; when collected over a long period of time it allows an estimate of the rotational period, the pole orientation (sometimes), and a rough estimate of the asteroid's shape. Spectral data (both visible-light and near-infrared spectroscopy) gives information about the object's composition, used to classify the observed asteroids. Such observations are limited as they provide information about only the thin layer on the surface (up to several micrometers). As planetologist Patrick Michel writes:
Mid- to thermal-infrared observations, along with polarimetry measurements, are probably the only data that give some indication of actual physical properties. Measuring the heat flux of an asteroid at a single wavelength gives an estimate of the dimensions of the object; these measurements have lower uncertainty than measurements of the reflected sunlight in the visible-light spectral region. If the two measurements can be combined, both the effective diameter and the geometric albedo—the latter being a measure of the brightness at zero phase angle, that is, when illumination comes from directly behind the observer—can be derived. In addition, thermal measurements at two or more wavelengths, plus the brightness in the visible-light region, give information on the thermal properties. The thermal inertia, which is a measure of how fast a material heats up or cools off, of most observed asteroids is lower than the bare-rock reference value but greater than that of the lunar regolith; this observation indicates the presence of an insulating layer of granular material on their surface. Moreover, there seems to be a trend, perhaps related to the gravitational environment, that smaller objects (with lower gravity) have a small regolith layer consisting of coarse grains, while larger objects have a thicker regolith layer consisting of fine grains. However, the detailed properties of this regolith layer are poorly known from remote observations. Moreover, the relation between thermal inertia and surface roughness is not straightforward, so one needs to interpret the thermal inertia with caution.
Near-Earth asteroids that come into close vicinity of the planet can be studied in more details with radar; it provides information about the surface of the asteroid (for example can show the presence of craters and boulders). Such observations were conducted by the Arecibo Observatory in Puerto Rico (305 meter dish) and Goldstone Observatory in California (70 meter dish). Radar observations can also be used for accurate determination of the orbital and rotational dynamics of observed objects.


Space-based observations

Both space and ground-based observatories conducted asteroid search programs; the space-based searches are expected to detect more objects because there is no atmosphere to interfere and because they can observe larger portions of the sky. NEOWISE observed more than 100,000 asteroids of the main belt, Spitzer Space Telescope observed more than 700 near-Earth asteroids. These observations determined rough sizes of the majority of observed objects, but provided limited detail about surface properties (such as regolith depth and composition, angle of repose, cohesion, and porosity). Asteroids were also studied by the Hubble Space Telescope, such as tracking the colliding asteroids in the main belt, break-up of an asteroid, observing an active asteroid with six comet-like tails, and observing asteroids that were chosen as targets of dedicated missions.


Space probe missions

According to Patrick Michel,
The internal structure of asteroids is inferred only from indirect evidence: bulk densities measured by spacecraft, the orbits of natural satellites in the case of asteroid binaries, and the drift of an asteroid's orbit due to the Yarkovsky thermal effect. A spacecraft near an asteroid is perturbed enough by the asteroid's gravity to allow an estimate of the asteroid's mass. The volume is then estimated using a model of the asteroid's shape. Mass and volume allow the derivation of the bulk density, whose uncertainty is usually dominated by the errors made on the volume estimate. The internal porosity of asteroids can be inferred by comparing their bulk density with that of their assumed meteorite analogues, dark asteroids seem to be more porous (>40%) than bright ones. The nature of this porosity is unclear.


Dedicated missions

The first asteroid to be photographed in close-up was 951 Gaspra in 1991, followed in 1993 by 243 Ida and its moon Dactyl (asteroid), Dactyl, all of which were imaged by the Galileo (spacecraft), ''Galileo'' probe en route to
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
. Other asteroids briefly visited by spacecraft en route to other destinations include 9969 Braille (by ''Deep Space 1'' in 1999), 5535 Annefrank (by ''Stardust (spacecraft), Stardust'' in 2002), 2867 Šteins and 21 Lutetia (by the Rosetta (spacecraft), ''Rosetta'' probe in 2008), and 4179 Toutatis (China's lunar orbiter ''Chang'e 2'', which flew within in 2012). The first dedicated asteroid probe was NASA's ''
NEAR Shoemaker ''Near Earth Asteroid Rendezvous – Shoemaker'' (''NEAR Shoemaker''), renamed after its 1996 launch in honor of planetary scientist Eugene Shoemaker, was a robotic space probe designed by the Johns Hopkins University Applied Physics Labora ...
'', which photographed 253 Mathilde in 1997, before entering into orbit around 433 Eros, finally landing on its surface in 2001. It was the first spacecraft to successfully orbit and land on an asteroid. From September to November 2005, the Japanese ''Hayabusa (spacecraft), Hayabusa'' probe studied 25143 Itokawa in detail and Sample return mission, returned samples of its surface to Earth on 13 June 2010, the first asteroid sample-return mission. In 2007,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
launched the Dawn (spacecraft), ''Dawn'' spacecraft, which orbited 4 Vesta for a year, and observed the dwarf planet
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
for three years. '' Hayabusa2'', a probe launched by
JAXA The is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orb ...
2014, orbited its target asteroid 162173 Ryugu for more than a year and took samples that were delivered to Earth in 2020. The spacecraft is now on an extended mission and expected to arrive at a new target in 2031. NASA launched the
OSIRIS-REx OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) is a NASA asteroid-study and sample-return mission. The mission's primary goal is to obtain a sample of at least from 101955 Bennu, a carbona ...
in 2016, a sample return mission to asteroid 101955 Bennu. In 2021, the probe departed the asteroid with a sample from its surface. Sample delivery to Earth is expected on September 24, 2023. The spacecraft will continue on an extended mission, designated OSIRIS-APEX, to explore near-Earth asteroid Apophis in 2029. Hayabusa2 Ion thruster.jpg, ''Hayabusa2'' File:Dawn_-_PIA12033.jpg, ''Dawn'' Lucy-PatroclusMenoetius-art.png, ''Lucy'' PSYCHE.jpg, ''Psyche''


Planned missions

Currently, several asteroid-dedicated missions are planned by NASA, JAXA, ESA, and CNSA. NASA's ''
Lucy Lucy is an English feminine given name derived from the Latin masculine given name Lucius with the meaning ''as of light'' (''born at dawn or daylight'', maybe also ''shiny'', or ''of light complexion''). Alternative spellings are Luci, Luce, Lu ...
'', launched in 2021, would visit eight asteroids, one from the
main belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called ...
and seven Jupiter trojans; it is the first mission to trojans. The main mission would start in 2027. In November 2021, NASA launched its
Double Asteroid Redirection Test Double Asteroid Redirection Test (DART) is a NASA space mission aimed at testing a method of planetary defense against near-Earth objects (NEOs). It was designed to assess how much a spacecraft impact deflects an asteroid through its transfe ...
(DART), a mission to test technology for defending Earth against potential hazardous objects. DART will deliberately crash into the
minor-planet moon A minor-planet moon is an astronomical object that orbits a minor planet as its natural satellite. , there are 457 minor planets known or suspected to have moons. Discoveries of minor-planet moons (and binary objects, in general) are importan ...
Dimorphos (65803) Didymos I Dimorphos (provisional designation S/2003 (65803) 1) is a minor-planet moon of the near-Earth asteroid 65803 Didymos, with which it forms a binary system. It has a diameter of and has been characterised as a low-density rubb ...
of the double asteroid 65803 Didymos, Didymos in September 2022 to assess the future potential of a spacecraft impact to deflect an asteroid from a collision course with Earth through a transference of momentum. ESA's ''Hera (space mission), Hera'', planned for launch in 2024, will study the results of the DART impact. It will measure the size and morphology of the crater, and momentum transmitted by the impact, to determine the efficiency of the deflection produced by DART. NASA's ''
Psyche Psyche (''Psyché'' in French) is the Greek term for "soul" (ψυχή). Psyche may also refer to: Psychology * Psyche (psychology), the totality of the human mind, conscious and unconscious * ''Psyche'', an 1846 book about the unconscious by Car ...
'' would be launched in 2023 or 2024 to study the large metallic asteroid 16 Psyche, of the same name. ''Janus (spacecraft), Janus'' is a planned dual space probe to be launched as a secondary payload on the ''Psyche'' launch. JAXA's DESTINY+ is a mission for a flyby of the Geminids meteor shower parent body 3200 Phaethon, as well as various minor bodies. Its launch is planned for 2024. CNSA's ''Tianwen-2'' is planned to launch in 2025. It will use solar electric propulsion to explore the co-orbital near-Earth asteroid 469219 Kamoʻoalewa and the active asteroid 311P/PanSTARRS. The spacecraft will collect samples of the regolith of Kamo'oalewa.


Asteroid mining

The concept of asteroid mining was proposed in 1970s. Matt Anderson defines successful asteroid mining as "the development of a mining program that is both financially self-sustaining and profitable to its investors". It has been suggested that asteroids might be used as a source of materials that may be rare or exhausted on Earth, or materials for constructing space habitats. Materials that are heavy and expensive to launch from Earth may someday be mined from asteroids and used for space manufacturing and construction. As resource depletion on Earth becomes more real, the idea of extracting valuable elements from asteroids and returning these to Earth for profit, or using space-based resources to build Space-based solar power, solar-power satellites and space habitats, becomes more attractive. Hypothetically, water processed from ice could refuel orbiting propellant depots. From the astrobiology, astrobiological perspective, asteroid prospecting could provide scientific data for the search for extraterrestrial intelligence (SETI). Some astrophysicists have suggested that if advanced extraterrestrial civilizations employed asteroid mining long ago, the hallmarks of these activities might be detectable. Mining
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
is also considered a possibility. As the largest body in the asteroid belt, Ceres could become the main base and transport hub for future asteroid mining infrastructure, allowing mineral resources to be transported to
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
, the Moon, and Earth. Because of its small escape velocity combined with large amounts of water ice, it also could serve as a source of water, fuel, and oxygen for ships going through and beyond the asteroid belt. Transportation from Mars or the Moon to Ceres would be even more energy-efficient than transportation from Earth to the Moon.


Threats to Earth

There is increasing interest in identifying asteroids whose orbits cross Earth's, and that could, given enough time, collide with Earth. The three most important groups of near-Earth asteroids are the Apollo asteroid, Apollos, Amor asteroid, Amors, and
Atens The Aten asteroids are a dynamical group of asteroids whose orbits bring them into proximity with Earth. By definition, Atens are Earth-crossing asteroids . The group is named after 2062 Aten, the first of its kind, discovered on 7 Januar ...
. The near-Earth object, near-Earth asteroid 433 Eros had been discovered as long ago as 1898, and the 1930s brought a flurry of similar objects. In order of discovery, these were: 1221 Amor, 1862 Apollo, 2101 Adonis, and finally 69230 Hermes, which approached within 0.005 Astronomical unit, AU of Earth in 1937. Astronomers began to realize the possibilities of Earth impact. Two events in later decades increased the alarm: the increasing acceptance of the Alvarez hypothesis that an
impact event An impact event is a collision between astronomical objects causing measurable effects. Impact events have physical consequences and have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or me ...
resulted in the Cretaceous–Paleogene extinction, and the 1994 observation of Comet Shoemaker-Levy 9 crashing into impact events on Jupiter, Jupiter. The U.S. military also declassified the information that its military satellites, built to detect nuclear explosions, had detected hundreds of upper-atmosphere impacts by objects ranging from one to ten meters across. All of these considerations helped spur the launch of highly efficient surveys, consisting of charge-coupled device (Charge-coupled device, CCD) cameras and computers directly connected to telescopes. , it was estimated that 89% to 96% of near-Earth asteroids one kilometer or larger in diameter had been discovered. A list of teams using such systems includes: * Lincoln Near-Earth Asteroid Research (LINEAR) * Near-Earth Asteroid Tracking (NEAT) * Spacewatch * LONEOS, Lowell Observatory Near-Earth-Object Search (LONEOS) * Catalina Sky Survey (CSS) * Pan-STARRS * NEOWISE * Asteroid Terrestrial-impact Last Alert System (ATLAS) * Campo Imperatore Near-Earth Object Survey (CINEOS) * Japanese Spaceguard Association * Asiago-DLR Asteroid Survey (ADAS) , the LINEAR system alone had discovered 147,132 asteroids. Among the surveys, 19,266 near-Earth asteroids have been discovered including almost 900 more than in diameter. In April 2018, the B612 Foundation reported "It is 100 percent certain we'll be hit [by a devastating asteroid], but we're not 100 percent sure when." In June 2018, the US National Science and Technology Council warned that America is unprepared for an asteroid impact event, and has developed and released the ''"National Near-Earth Object Preparedness Strategy Action Plan"'' to better prepare. According to expert testimony in the United States Congress in 2013,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
would require at least five years of preparation before a mission to intercept an asteroid could be launched. The United Nations declared 30 June as International Asteroid Day to educate the public about asteroids. The date of International Asteroid Day commemorates the anniversary of the Tunguska asteroid impact over Siberia, on 30 June 1908.


Chicxulub impact

The Chicxulub crater is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore near the communities of Progreso Municipality, Yucatán#Communities, Chicxulub Puerto and Chicxulub Pueblo, after which the crater is named. It was formed when a large asteroid, about in diameter, struck the Earth. The crater is estimated to be in diameter and in depth. It is list of impact craters on Earth#Largest craters (10 Ma or more), one of the largest confirmed impact structures on Earth, and the only one whose peak ring is intact and directly accessible for scientific research. In the late 1970s, geologist Walter Alvarez and his father, Nobel Prize–winning scientist Luis Walter Alvarez, put forth their theory that the Cretaceous–Paleogene extinction was caused by an impact event. The main evidence of such an impact was contained in a thin layer of clay present in the Cretaceous–Paleogene boundary, K–Pg boundary in Gubbio, Gubbio, Italy. The Alvarezes and colleagues reported that it contained an iridium anomaly, abnormally high concentration of iridium, a chemical element rare on earth but common in asteroids. Iridium levels in this layer were as much as 160 times above the background level. It was hypothesized that the iridium was spread into the atmosphere when the impactor was vaporized and settled across the Earth's surface among other material thrown up by the impact, producing the layer of iridium-enriched clay. At the time, consensus was not settled on what caused the Cretaceous–Paleogene extinction and the boundary layer, with theories including a nearby supernova, climate change, or a geomagnetic reversal. The Alvarezes' impact hypothesis was rejected by many paleontologists, who believed that the lack of fossils found close to the K–Pg boundary—the "three-meter problem"—suggested a more gradual die-off of fossil species. There is broad consensus that the Chicxulub impactor was an asteroid with a carbonaceous chondrite composition, rather than a comet. The impactor was around in diameter—large enough that, if set at sea level, it would have reached taller than Mount Everest.


Asteroid deflection strategies

Various collision avoidance techniques have different trade-offs with respect to metrics such as overall performance, cost, failure risks, operations, and technology readiness. There are various methods for changing the course of an asteroid/comet.C. D. Hall and I. Michael Ross, I. M. Ross, "Dynamics and Control Problems in the Deflection of Near-Earth Objects", ''Advances in the Astronautical Sciences, Astrodynamics 1997'', Vol. 97, Part I, 1997, pp. 613–631. These can be differentiated by various types of attributes such as the type of mitigation (deflection or fragmentation), energy source (kinetic, electromagnetic, gravitational, solar/thermal, or nuclear), and approach strategy (interception, rendezvous, or remote station). Strategies fall into two basic sets: fragmentation and delay. Fragmentation concentrates on rendering the impactor harmless by fragmenting it and scattering the fragments so that they miss the Earth or are small enough to burn up in the atmosphere. Delay exploits the fact that both the Earth and the impactor are in orbit. An impact occurs when both reach the same point in space at the same time, or more correctly when some point on Earth's surface intersects the impactor's orbit when the impactor arrives. Since the Earth is approximately 12,750 km in diameter and moves at approx. 30 km per second in its orbit, it travels a distance of one planetary diameter in about 425 seconds, or slightly over seven minutes. Delaying, or advancing the impactor's arrival by times of this magnitude can, depending on the exact geometry of the impact, cause it to miss the Earth. "1566 Icarus#Project Icarus, Project Icarus" was one of the first projects designed in 1967 as a contingency plan in case of collision with 1566 Icarus. The plan relied on the new Saturn V rocket, which did not make its first flight until after the report had been completed. Six Saturn V rockets would be used, each launched at variable intervals from months to hours away from impact. Each rocket was to be fitted with a single 100-megaton nuclear warhead as well as a modified Apollo Service Module and uncrewed Apollo Command Module for guidance to the target. The warheads would be detonated 30 meters from the surface, deflecting or partially destroying the asteroid. Depending on the subsequent impacts on the course or the destruction of the asteroid, later missions would be modified or cancelled as needed. The "last-ditch" launch of the sixth rocket would be 18 hours prior to impact.


Fiction

Asteroids and the asteroid belt are a staple of science fiction stories. Asteroids play several potential roles in science fiction: as places human beings might colonize, resources for extracting minerals, hazards encountered by spacecraft traveling between two other points, and as a threat to life on Earth or other inhabited planets, dwarf planets, and natural satellites by potential impact.


See also

* List of asteroid close approaches to Earth * List of exceptional asteroids * Lost minor planet * Meanings of minor-planet names


Notes


References


Further reading

* * * * * * *


External links

* * * * * {{Authority control Asteroids, Minor planets