HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
, which in turn depends on the nature of the incident radiation, typically
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
,
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
or
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
. The common feature of all form factors is that they involve a
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
of a spatial density distribution of the scattering object from real space to momentum space (also known as
reciprocal space Reciprocal lattice is a concept associated with solids with translational symmetry which plays a major role in many areas such as X-ray diffraction, X-ray and Electron diffraction, electron diffraction as well as the Electronic band structure, e ...
). For an object with spatial density distribution, \rho(\mathbf), the form factor, f(\mathbf), is defined as :f(\mathbf)=\int \rho(\mathbf) e^\mathrm^3\mathbf, where \rho(\mathbf) is the spatial density of the scatterer about its
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weight function, weighted relative position (vector), position of the d ...
(\mathbf=0), and \mathbf is the
momentum transfer In particle physics, wave mechanics, and optics, momentum transfer is the amount of momentum that one particle gives to another particle. It is also called the scattering vector as it describes the transfer of wavevector in wave mechanics. In ...
. As a result of the nature of the Fourier transform, the broader the distribution of the scatterer \rho in real space \mathbf, the narrower the distribution of f in \mathbf; i.e., the faster the decay of the form factor. For crystals, atomic form factors are used to calculate the
structure factor In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation ...
for a given
Bragg peak The Bragg peak is a pronounced peak on the Bragg curve which plots the energy loss of ionizing radiation during its travel through matter. For protons, α-rays, and other ion rays, the peak occurs immediately before the particles come to rest. ...
of a
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
.


X-ray form factors

X-rays are scattered by the electron cloud of the atom and hence the scattering amplitude of X-rays increases with the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
, Z, of the atoms in a sample. As a result, X-rays are not very sensitive to light atoms, such as
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
and
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, and there is very little contrast between elements adjacent to each other in the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. For X-ray scattering, \rho(r) in the above equation is the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
charge density In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in co ...
about the nucleus, and the form factor the Fourier transform of this quantity. The assumption of a spherical distribution is usually good enough for
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
. In general the X-ray form factor is complex but the imaginary components only become large near an absorption edge. Anomalous X-ray scattering makes use of the variation of the form factor close to an absorption edge to vary the scattering power of specific atoms in the sample by changing the energy of the incident x-rays hence enabling the extraction of more detailed structural information. Atomic form factor patterns are often represented as a function of the magnitude of the ''scattering vector'' Q = 2k \sin (\theta ). Herein k = 2\pi / \lambda is the wavenumber and 2\theta is the scattering angle between the incident x-ray beam and the detector measuring the scattered intensity, while \lambda is the wavelength of the X-rays. One interpretation of the scattering vector is that it is the ''resolution'' or ''yardstick'' with which the sample is observed. In the range of scattering vectors between 0 < Q < 25 Å−1, the atomic form factor is well approximated by a sum of Gaussians of the form : f(Q) = \sum_^ a_i \exp\left(-b_i \left(\frac\right)^2\right) + c where the values of ai, bi, and c are tabulated here.


Electron form factor

The relevant distribution, \rho(r) is the potential distribution of the atom, and the electron form factor is the Fourier transform of this. The electron form factors are normally calculated from X-ray form factors using the Mott–Bethe formula. This formula takes into account both elastic electron-cloud scattering and elastic nuclear scattering.


Neutron form factor

There are two distinct scattering interactions of
neutrons The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the f ...
by nuclei. Both are used in the investigation structure and dynamics of condensed matter: they are termed nuclear (sometimes also termed chemical) and magnetic scattering.


Nuclear scattering

Nuclear scattering of the free neutron by the nucleus is mediated by the
strong nuclear force In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, an ...
. The
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of thermal (several
ångström The angstrom (; ) is a unit of length equal to m; that is, one ten- billionth of a metre, a hundred-millionth of a centimetre, 0.1 nanometre, or 100 picometres. The unit is named after the Swedish physicist Anders Jonas Ångström (1814� ...
s) and cold neutrons (up to tens of Angstroms) typically used for such investigations is 4-5 orders of magnitude larger than the dimension of the nucleus ( femtometres). The free neutrons in a beam travel in a
plane wave In physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of ...
; for those that undergo nuclear scattering from a nucleus, the nucleus acts as a secondary
point source A point source is a single identifiable ''localized'' source of something. A point source has a negligible extent, distinguishing it from other source geometries. Sources are called point sources because, in mathematical modeling, these sources ...
, and radiates scattered neutrons as a spherical wave. (Although a quantum phenomenon, this can be visualized in simple classical terms by the
Huygens–Fresnel principle The Huygens–Fresnel principle (named after Netherlands, Dutch physicist Christiaan Huygens and France, French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary w ...
.) In this case \rho(r) is the spatial density distribution of the nucleus, which is an infinitesimal point (
delta function In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real lin ...
), with respect to the neutron wavelength. The delta function forms part of the Fermi pseudopotential, by which the free neutron and the nuclei interact. The Fourier transform of a delta function is unity; therefore, it is commonly said that neutrons "do not have a form factor;" i.e., the scattered amplitude, b, is independent of Q. Since the interaction is nuclear, each isotope has a different scattering amplitude. This Fourier transform is scaled by the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
of the spherical wave, which has dimensions of length. Hence, the amplitude of scattering that characterizes the interaction of a neutron with a given isotope is termed the
scattering length The scattering length in quantum mechanics describes low-energy scattering. For potentials that decay faster than 1/r^3 as r\to \infty, it is defined as the following low-energy limit: : \lim_ k\cot\delta(k) =- \frac\;, where a is the scatterin ...
, ''b''. Neutron scattering lengths vary erratically between neighbouring elements in the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
and between
isotopes Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but ...
of the same element. They may only be determined experimentally, since the theory of nuclear forces is not adequate to calculate or predict ''b'' from other properties of the nucleus.


Magnetic scattering

Although neutral, neutrons also have a
nuclear spin Nuclear may refer to: Physics Relating to the nucleus of the atom: * Nuclear engineering * Nuclear physics * Nuclear power * Nuclear reactor * Nuclear weapon * Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics * Nuclear space * ...
. They are a composite
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
and hence have an associated
magnetic moment In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
. In neutron scattering from condensed matter, magnetic scattering refers to the interaction of this moment with the magnetic moments arising from unpaired electrons in the outer orbitals of certain atoms. It is the spatial distribution of these unpaired electrons about the nucleus that is \rho(r) for magnetic scattering. Since these orbitals are typically of a comparable size to the wavelength of the free neutrons, the resulting form factor resembles that of the X-ray form factor. However, this neutron-magnetic scattering is only from the outer electrons, rather than being heavily weighted by the core electrons, which is the case for X-ray scattering. Hence, in strong contrast to the case for nuclear scattering, the scattering object for magnetic scattering is far from a point source; it is still more diffuse than the effective size of the source for X-ray scattering, and the resulting Fourier transform (the magnetic form factor) decays more rapidly than the X-ray form factor. Also, in contrast to nuclear scattering, the magnetic form factor is not isotope dependent, but is dependent on the oxidation state of the atom.


References

{{reflist Atomic physics