In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an arithmetic group is a group obtained as the integer points of an
algebraic group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.
Man ...
, for example
They arise naturally in the study of arithmetic properties of
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example,
4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong t ...
s and other classical topics in
number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
. They also give rise to very interesting examples of
Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s and hence are objects of interest in
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
. Finally, these two topics join in the theory of
automorphic form
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G o ...
s which is fundamental in modern number theory.
History
One of the origins of the mathematical theory of arithmetic groups is algebraic number theory. The classical reduction theory of quadratic and Hermitian forms by
Charles Hermite
Charles Hermite () FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.
Hermite p ...
,
Hermann Minkowski
Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, the University of Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, o ...
and others can be seen as computing
fundamental domain
Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each ...
s for the action of certain arithmetic groups on the relevant
symmetric space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geome ...
s. The topic was related to Minkowski's
geometry of numbers
Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice (group), lattice in \mathbb R^n, and the study of these lattices provides fundam ...
and the early development of the study of arithmetic invariant of number fields such as the
discriminant
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the zero of a function, roots without computing them. More precisely, it is a polynomial function of the coef ...
. Arithmetic groups can be thought of as a vast generalisation of the
unit group
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that
vu = uv = 1,
where is the multiplicative identity; the el ...
s of number fields to a noncommutative setting.
The same groups also appeared in
analytic number theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dir ...
as the study of classical modular forms and their generalisations developed. Of course the two topics were related, as can be seen for example in Langlands' computation of the volume of certain fundamental domains using analytic methods. This classical theory culminated with the work of Siegel, who showed the finiteness of the volume of a fundamental domain in many cases.
For the modern theory to begin foundational work was needed, and was provided by the work of
Armand Borel
Armand Borel (21 May 1923 – 11 August 2003) was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in alg ...
,
André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is du ...
,
Jacques Tits
Jacques Tits () (12 August 1930 – 5 December 2021) was a Belgian-born French mathematician who worked on group theory and incidence geometry. He introduced Tits buildings, the Tits alternative, the Tits group, and the Tits metric.
Early life ...
and others on algebraic groups. Shortly afterwards the finiteness of covolume was proven in full generality by Borel and
Harish-Chandra
Harish-Chandra (né Harishchandra) FRS (11 October 1923 – 16 October 1983) was an Indian-American mathematician and physicist who did fundamental work in representation theory, especially harmonic analysis on semisimple Lie groups.
Early ...
. Meanwhile, there was progress on the general theory of lattices in
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
s by
Atle Selberg
Atle Selberg (14 June 1917 – 6 August 2007) was a Norwegian mathematician known for his work in analytic number theory and the theory of automorphic forms, and in particular for bringing them into relation with spectral theory. He was awarded ...
,
Grigori Margulis
Grigory Aleksandrovich Margulis (, first name often given as Gregory, Grigori or Gregori; born February 24, 1946) is a Russian-American mathematician known for his work on lattices in Lie groups, and the introduction of methods from ergodic theo ...
,
David Kazhdan
David Kazhdan (), born Dmitry Aleksandrovich Kazhdan (), is a Soviet and Israeli mathematician known for work in representation theory. Kazhdan is a 1990 MacArthur Fellow.
Biography
Kazhdan was born on 20 June 1946 in Moscow, USSR. His father ...
,
M. S. Raghunathan and others. The state of the art after this period was essentially fixed in Raghunathan's treatise, published in 1972.
In the seventies Margulis revolutionised the topic by proving that in "most" cases the arithmetic constructions account for all lattices in a given Lie group. Some limited results in this direction had been obtained earlier by Selberg, but Margulis' methods (the use of
ergodic-theoretical tools for actions on homogeneous spaces) were completely new in this context and were to be extremely influential on later developments, effectively renewing the old subject of geometry of numbers and allowing Margulis himself to prove the
Oppenheim conjecture
In Diophantine approximation, a subfield of number theory, the Oppenheim conjecture concerns representations of numbers by real quadratic forms in several variables. It was formulated in 1929 by Alexander Oppenheim and later the conjectured prop ...
; stronger results (
Ratner's theorems
In mathematics, Ratner's theorems are a group of major theorems in ergodic theory concerning unipotent flows on homogeneous spaces proved by Marina Ratner around 1990. The theorems grew out of Ratner's earlier work on horocycle flows. The study of ...
) were later obtained by
Marina Ratner
Marina Evseevna Ratner (; October 30, 1938 – July 7, 2017) was a professor of mathematics at the University of California, Berkeley who worked in ergodic theory. Around 1990, she proved a group of major theorems concerning unipotent flows on h ...
.
In another direction the classical topic of modular forms has blossomed into the modern theory of automorphic forms. The driving force behind this effort is mainly the
Langlands program
In mathematics, the Langlands program is a set of conjectures about connections between number theory, the theory of automorphic forms, and geometry. It was proposed by . It seeks to relate the structure of Galois groups in algebraic number t ...
initiated by
Robert Langlands
Robert Phelan Langlands, (; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study o ...
. One of the main tool used there is the
trace formula originating in Selberg's work and developed in the most general setting by
James Arthur
James Andrew Arthur (born 2 March 1988) is an English singer and songwriter. He rose to fame after winning the ninth series of ''The X Factor'' in 2012. His debut single, a cover of Shontelle's " Impossible", was released by Syco Music aft ...
.
Finally arithmetic groups are often used to construct interesting examples of
locally symmetric Riemannian manifolds. A particularly active research topic has been
arithmetic hyperbolic 3-manifolds, which as
William Thurston
William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds.
Thurst ...
wrote, "...often seem to have special beauty."
Definition and construction
Arithmetic groups
If
is an algebraic subgroup of
for some
then we can define an arithmetic subgroup of
as the group of integer points
In general it is not so obvious how to make precise sense of the notion of "integer points" of a
-group, and the subgroup defined above can change when we take different embeddings
Thus a better notion is to take for definition of an arithmetic subgroup of
any group
which is
commensurable (this means that both
and
are finite sets) with a group
defined as above (with respect to any embedding into
). With this definition, to the algebraic group
is associated a collection of "discrete" subgroups all commensurable to each other.
Using number fields
A natural generalisation of the construction above is as follows: let
be a
number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
with ring of integers
and
an algebraic group over
. If we are given an embedding
defined over
then the subgroup
can legitimately be called an arithmetic group.
On the other hand, the class of groups thus obtained is not larger than the class of arithmetic groups as defined above. Indeed, if we consider the algebraic group
over
obtained by
restricting scalars from
to
and the
-embedding
induced by
(where