A muon ( ; from the
Greek letter
mu (μ) used to represent it) is an
elementary particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
similar to the
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
, with an
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
of −1 ''
e'' and a
spin of ''ħ'', but with a much greater mass. It is classified as a
lepton
In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
. As with other leptons, the muon is not thought to be composed of any simpler particles.
The muon is an unstable
subatomic particle
In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, lik ...
with a
mean lifetime of , much longer than many other subatomic particles. As with the decay of the free
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
(with a lifetime around 15 minutes), muon decay is slow (by subatomic standards) because the decay is mediated only by the
weak interaction
In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
(rather than the more powerful
strong interaction
In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
or
electromagnetic interaction), and because the mass difference between the muon and the set of its decay products is small, providing few kinetic
degrees of freedom
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
for decay. Muon decay almost always produces at least three particles, which must include an electron of the same charge as the muon and two types of
neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s.
Like all elementary particles, the muon has a corresponding
antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
of opposite charge (+1 ''e'') but equal
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
and spin: the antimuon (also called a ''positive muon''). Muons are denoted by and antimuons by . Formerly, muons were called ''mu mesons'', but are not classified as
meson
In particle physics, a meson () is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, the ...
s by modern particle physicists (see ), and that name is no longer used by the physics community.
Muons have a
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
of , which is approximately times that of the electron, ''m''. There is also a third lepton, the
tau
Tau (; uppercase Τ, lowercase τ or \boldsymbol\tau; ) is the nineteenth letter of the Greek alphabet, representing the voiceless alveolar plosive, voiceless dental or alveolar plosive . In the system of Greek numerals, it has a value of 300 ...
, approximately 17 times heavier than the muon.
Due to their greater mass, muons accelerate more slowly than electrons in electromagnetic fields, and emit less
bremsstrahlung (deceleration radiation). This allows muons of a given energy to
penetrate far deeper into matter because the deceleration of electrons and muons is primarily due to energy loss by the bremsstrahlung mechanism. For example, so-called secondary muons, created by
cosmic rays
Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar ...
hitting the atmosphere, can penetrate the atmosphere and reach Earth's land surface and even into deep mines.
Because muons have a greater mass and energy than the
decay energy of radioactivity, they are not produced by
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. Nonetheless, they are produced in great amounts in high-energy interactions in normal matter, in certain
particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
experiments with
hadron
In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s, and in cosmic ray interactions with matter. These interactions usually produce
pi mesons initially, which almost always decay to muons.
As with the other charged leptons, the muon has an associated
muon neutrino
The muon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwa ...
, denoted by , which differs from the
electron neutrino
The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name ''electron neutrino''. It was first hypothesized by Wolfga ...
and participates in different nuclear reactions.
History of discovery
Muons were discovered by
Carl D. Anderson and
Seth Neddermeyer at
Caltech
The California Institute of Technology (branded as Caltech) is a private university, private research university in Pasadena, California, United States. The university is responsible for many modern scientific advancements and is among a small g ...
in 1936 while studying
cosmic radiation. Anderson noticed particles that curved differently from electrons and other known particles when passed through a
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
. They were negatively charged but curved less sharply than electrons, but more sharply than
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s, for particles of the same velocity. It was assumed that the magnitude of their negative electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that their mass was greater than an electron's but smaller than a proton's. Thus Anderson initially called the new particle a ''mesotron'', adopting the prefix ''meso-'' from the Greek word for "mid-". The existence of the muon was confirmed in 1937 by
J. C. Street and E. C. Stevenson's
cloud chamber
A cloud chamber, also known as a Wilson chamber, is a particle detector used for visualizing the passage of ionizing radiation.
A cloud chamber consists of a sealed environment containing a supersaturated vapor of water or alcohol. An energetic ...
experiment.
A particle with a mass in the
meson
In particle physics, a meson () is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, the ...
range had been predicted before the discovery of any mesons, by theorist
Hideki Yukawa
Hideki Yukawa (; ; 23 January 1907 – 8 September 1981) was a Japanese theoretical physicist who received the Nobel Prize in Physics in 1949 "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces".
B ...
:
It seems natural to modify the theory of Heisenberg and Fermi in the following way. The transition of a heavy particle from neutron state to proton state is not always accompanied by the emission of light particles. The transition is sometimes taken up by another heavy particle.
Because of its mass, the mu meson was initially thought to be Yukawa's particle and some scientists, including
Niels Bohr
Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
, originally named it the ''yukon''.
The fact that the mesotron (i.e. the muon) was not Yukawa's particle was established in 1946 by an experiment conducted by
Marcello Conversi,
Oreste Piccioni
Oreste Piccioni (October 24, 1915 – April 13, 2002) was an Italian-American physicist who made important contributions to elementary particle physics. He is the co-discoverer of the antineutron.
Biography
He was a graduate student of En ...
, and Ettore Pancini in Rome. In this experiment, which
Luis Walter Alvarez called the "start of modern particle physics" in his 1968 Nobel lecture,
they showed that the muons from cosmic rays were decaying without being captured by atomic nuclei, contrary to what was expected of the mediator of the
nuclear force
The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both ...
postulated by Yukawa. Yukawa's predicted particle, the
pi meson, was finally identified in 1947 (again from cosmic ray interactions).
With two particles now known with the intermediate mass, the more general term ''meson'' was adopted to refer to any such particle within the correct mass range between electrons and nucleons. Further, in order to differentiate between the two different types of mesons after the second meson was discovered, the initial mesotron particle was renamed the ''mu meson'' (the Greek letter ''μ''
'mu''corresponds to ''m''), and the new 1947 meson (Yukawa's particle) was named the ''pi meson''.
As more types of mesons were discovered in accelerator experiments later, it was eventually found that the mu meson significantly differed not only from the pi meson (of about the same mass), but also from all other types of mesons. The difference, in part, was that mu mesons did not interact with the nuclear force, as pi mesons did (and were required to do, in Yukawa's theory). Newer mesons also showed evidence of behaving like the pi meson in nuclear interactions, but not like the mu meson. Also, the mu meson's decay products included both a
neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
and an
antineutrino, rather than just one or the other, as was observed in the decay of other charged mesons.
In the eventual
Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of
particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
codified in the 1970s, all mesons other than the mu meson were understood to be
hadrons – that is, particles made of
quarks – and thus subject to the nuclear force. In the quark model, a ''meson'' was no longer defined by mass (for some had been discovered that were very massive – more than
nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number.
Until the 1960s, nucleons were thought to be ele ...
s), but instead were particles composed of exactly two quarks (a quark and antiquark), unlike the
baryon
In particle physics, a baryon is a type of composite particle, composite subatomic particle that contains an odd number of valence quarks, conventionally three. proton, Protons and neutron, neutrons are examples of baryons; because baryons are ...
s, which are defined as particles composed of three quarks (protons and neutrons were the lightest baryons). Mu mesons, however, had shown themselves to be fundamental particles (leptons) like electrons, with no quark structure. Thus, mu "mesons" were not mesons at all, in the new sense and use of the term ''meson'' used with the quark model of particle structure.
With this change in definition, the term ''mu meson'' was abandoned, and replaced whenever possible with the modern term ''muon'', making the term "mu meson" only a historical footnote. In the new quark model, other types of mesons sometimes continued to be referred to in shorter terminology (e.g., ''pion'' for pi meson), but in the case of the muon, it retained the shorter name and was never again properly referred to by older "mu meson" terminology.
The eventual recognition of the muon as a simple "heavy electron", with no role at all in the nuclear interaction, seemed so incongruous and surprising at the time, that Nobel laureate
I. I. Rabi famously quipped, "Who ordered that?".
In the
Rossi–Hall experiment (1941), muons were used to observe the
time dilation
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unsp ...
(or, alternatively,
length contraction
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald ...
) predicted by
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
, for the first time.
Muon sources

Muons arriving on the Earth's surface are created indirectly as decay products of collisions of cosmic rays with particles of the Earth's atmosphere.
When a cosmic ray proton impacts atomic nuclei in the upper atmosphere,
pion
In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
s are created. These decay within a relatively short distance (meters) into muons (their preferred decay product), and
muon neutrino
The muon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwa ...
s. The muons from these high-energy cosmic rays generally continue in about the same direction as the original proton, at a velocity near the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. Although their lifetime ''without'' relativistic effects would allow a half-survival distance of only about 456 m at most (as seen from Earth), the
time dilation
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unsp ...
effect of
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
(from the viewpoint of the Earth) allows cosmic ray secondary muons to survive the flight to the Earth's surface, since in the Earth frame the muons have a longer
half-life Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* ''Half Life: ...
due to their velocity. From the viewpoint (
inertial frame
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
) of the muon, on the other hand, it is the
length contraction
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald ...
effect of special relativity that allows this penetration, since in the muon frame its lifetime is unaffected, but the length contraction causes distances through the atmosphere and Earth to be far shorter than these distances in the Earth rest-frame. Both effects are equally valid ways of explaining the fast muon's unusual survival over distances.
Since muons are unusually penetrative of ordinary matter, like neutrinos, they are also detectable deep underground (700 m at the
Soudan 2 detector) and underwater, where they form a major part of the natural background ionizing radiation. Like cosmic rays, as noted, this secondary muon radiation is also directional.
The same nuclear reaction described above (i.e. hadron–hadron impacts to produce pion beams, which then quickly decay to muon beams over short distances) is used by particle physicists to produce muon beams, such as the beam used for the muon
''g''−2 experiment.
Muon decay
Muons are unstable elementary particles and are heavier than electrons and neutrinos but lighter than all other matter particles. They decay via the
weak interaction
In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
. Because
leptonic family numbers are conserved in the absence of an extremely unlikely immediate
neutrino oscillation
Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, mea ...
, one of the product neutrinos of muon decay must be a muon-type neutrino and the other an electron-type antineutrino (antimuon decay produces the corresponding antiparticles, as detailed below).
Because charge must be conserved, one of the products of muon decay is always an electron of the same charge as the muon (a positron if it is a positive muon). Thus all muons decay to at least an electron, and two neutrinos. Sometimes, besides these necessary products, additional other particles that have no net charge and spin of zero (e.g., a pair of photons, or an electron-positron pair), are produced.
The dominant muon decay mode (sometimes called the Michel decay after
Louis Michel) is the simplest possible: the muon decays to an electron, an electron antineutrino, and a muon neutrino. Antimuons, in mirror fashion, most often decay to the corresponding antiparticles: a
positron
The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
, an electron neutrino, and a muon antineutrino. In formulaic terms, these two decays are:
: → +
: → +
The mean lifetime, , of the (positive) muon is .
The equality of the muon and antimuon lifetimes has been established to better than one part in 10
4.
Prohibited decays
Certain neutrino-less decay modes are kinematically allowed but are, for all practical purposes, forbidden in the
Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
, even given that neutrinos have mass and oscillate. Examples forbidden by lepton flavour conservation are:
: → +
and
: → + + .
Taking into account neutrino mass, a decay like → + is technically possible in the Standard Model (for example by
neutrino oscillation
Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, mea ...
of a virtual muon neutrino into an electron neutrino), but such a decay is extremely unlikely and therefore should be experimentally unobservable. Fewer than one in 10
50 muon decays should produce such a decay.
Observation of such decay modes would constitute clear evidence for theories
beyond the Standard Model. Upper limits for the branching fractions of such decay modes were measured in many experiments starting more than years ago. The current upper limit for the → + branching fraction was measured 2009–2013 in the
MEG experiment and is .
[
]
Theoretical decay rate
The muon
decay width that follows from
Fermi's golden rule
In quantum physics, Fermi's golden rule is a formula that describes the transition rate (the probability of a transition per unit time) from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a ...
has dimension of energy, and must be proportional to the square of the amplitude, and thus the square of
Fermi's coupling constant (
), with over-all dimension of inverse fourth power of energy. By
dimensional analysis, this leads to
Sargent's rule of fifth-power dependence on ,
:
where
,
[ and:
: is the fraction of the maximum energy transmitted to the electron.
The decay distributions of the electron in muon decays have been parameterised using the so-called Michel parameters. The values of these four parameters are predicted unambiguously in the Standard Model of particle physics, thus muon decays represent a good test of the spacetime structure of the ]weak interaction
In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
. No deviation from the Standard Model predictions has yet been found.
For the decay of the muon, the expected decay distribution for the Standard Model values of Michel parameters is
: