
Spherical trigonometry is the branch of
spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres.
Long studied for its practical applicati ...
that deals with the metrical relationships between the
sides and
angle
In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s of spherical triangles, traditionally expressed using
trigonometric function
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s. On the
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
,
geodesics
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connec ...
are
great circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.
Discussion
Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
s. Spherical trigonometry is of great importance for calculations in
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
,
geodesy
Geodesy or geodetics is the science of measuring and representing the Figure of the Earth, geometry, Gravity of Earth, gravity, and Earth's rotation, spatial orientation of the Earth in Relative change, temporally varying Three-dimensional spac ...
, and
navigation
Navigation is a field of study that focuses on the process of monitoring and controlling the motion, movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navig ...
.
The origins of spherical trigonometry in
Greek mathematics
Ancient Greek mathematics refers to the history of mathematical ideas and texts in Ancient Greece during Classical antiquity, classical and late antiquity, mostly from the 5th century BC to the 6th century AD. Greek mathematicians lived in cities ...
and the major developments in Islamic mathematics are discussed fully in
History of trigonometry
Early study of triangles can be traced to Egyptian mathematics (Rhind Mathematical Papyrus) and Babylonian mathematics during the 2nd millennium BC. Trigonometry was also prevalent in Kushite mathematics.
Systematic study of trigonometric funct ...
and
Mathematics in medieval Islam
Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built upon syntheses of Greek mathematics (Euclid, Archimedes, Apollonius) and Indian mathematics (Aryabhata, Brahmagupta). Important developments o ...
. The subject came to fruition in Early Modern times with important developments by
John Napier
John Napier of Merchiston ( ; Latinisation of names, Latinized as Ioannes Neper; 1 February 1550 – 4 April 1617), nicknamed Marvellous Merchiston, was a Scottish landowner known as a mathematician, physicist, and astronomer. He was the 8 ...
,
Delambre
Jean Baptiste Joseph, chevalier Delambre (19 September 1749 – 19 August 1822) was a French mathematician, astronomer, historian of astronomy, and geodesist. He was also director of the Paris Observatory, and author of well-known books on th ...
and others, and attained an essentially complete form by the end of the nineteenth century with the publication of Todhunter's textbook ''Spherical trigonometry for the use of colleges and Schools''.
Since then, significant developments have been the application of vector methods, quaternion methods, and the use of numerical methods.
Preliminaries
Spherical polygons
A spherical polygon is a ''
polygon
In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain.
The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
'' on the surface of the sphere. Its sides are
arcs of
great circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.
Discussion
Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
s—the spherical geometry equivalent of
line segment
In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
s in
plane geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
.
Such polygons may have any number of sides greater than 1. Two-sided spherical polygons—''
lune
Lune may refer to:
Rivers
*River Lune, in Lancashire and Cumbria, England
*River Lune, Durham, in County Durham, England
*Lune (Weser), a 43 km-long tributary of the Weser in Germany
*Lune River (Tasmania), in south-eastern Tasmania, Australia
Pl ...
s'', also called ''
digon
In geometry, a bigon, digon, or a ''2''-gon, is a polygon with two sides (edge (geometry), edges) and two Vertex (geometry), vertices. Its construction is Degeneracy (mathematics), degenerate in a Euclidean plane because either the two sides wou ...
s'' or ''bi-angles''—are bounded by two great-circle arcs: a familiar example is the curved outward-facing surface of a segment of an orange. Three arcs serve to define a spherical triangle, the principal subject of this article. Polygons with higher numbers of sides (4-sided spherical quadrilaterals, 5-sided spherical pentagons, etc.) are defined in similar manner. Analogously to their plane counterparts, spherical polygons with more than 3 sides can always be treated as the composition of spherical triangles.
One spherical polygon with interesting properties is the
pentagramma mirificum
''Pentagramma mirificum'' (Latin for "miraculous pentagram") is a star polygon on a sphere, composed of five great circle arcs, all of whose internal angles are right angles. This shape was described by John Napier in his 1614 book '' Mirif ...
, a 5-sided spherical
star polygon
In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, Decagram (geometry)#Related figures, certain notable ones can ...
with a right angle at every vertex.
From this point in the article, discussion will be restricted to spherical triangles, referred to simply as ''triangles''.
Notation

*Both vertices and angles at the vertices of a triangle are denoted by the same upper case letters , , and .
*Sides are denoted by lower-case letters: , , and . The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see
arc length
Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a problem in vector calculus and in differential geometry. In the ...
).
*The ''angle'' (respectively, and ) may be regarded either as the
dihedral angle between the two planes that intersect the sphere at the ''
vertex'' , or, equivalently, as the angle between the
tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
s of the great circle arcs where they meet at the vertex.
*Angles are expressed in
radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s. The angles of ''proper'' spherical triangles are (by convention) less than , so that
(Todhunter,
[ Art.22,32).
In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly radians.
*Sides are also expressed in radians. A side (regarded as a great circle arc) is measured by the angle that it subtends at the centre. On the unit sphere, this radian measure is numerically equal to the arc length. By convention, the sides of ''proper'' spherical triangles are less than , so that (Todhunter,][ Art.22,32).
*The sphere's radius is taken as unity. For specific practical problems on a sphere of radius the measured lengths of the sides must be divided by before using the identities given below. Likewise, after a calculation on the unit sphere the sides , , and must be multiplied by .
]
Polar triangles
The polar triangle associated with a triangle is defined as follows. Consider the great circle that contains the side . This great circle is defined by the intersection of a diametral plane with the surface. Draw the normal to that plane at the centre: it intersects the surface at two points and the point that is on the same side of the plane as is (conventionally) termed the pole of and it is denoted by . The points and are defined similarly.
The triangle is the polar triangle corresponding to triangle . The angles and sides of the polar triangle are
given by (Todhunter,[ Art.27)
Therefore, if any identity is proved for then we can immediately derive a second identity by applying the first identity to the polar triangle by making the above substitutions. This is how the supplemental cosine equations are derived from the cosine equations. Similarly, the identities for a quadrantal triangle can be derived from those for a right-angled triangle. The polar triangle of a polar triangle is the original triangle.
If the matrix has the positions , , and as its columns then the rows of the matrix inverse , if normalized to unit length, are the positions , , and . In particular, when is the polar triangle of then is the polar triangle of .
]
Cosine rules and sine rules
Cosine rules
The cosine rule is the fundamental identity of spherical trigonometry: all other identities, including the sine rule, may be derived from the cosine rule:
These identities generalize the cosine rule of plane trigonometry
Trigonometry () is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The fiel ...
, to which they are asymptotically equivalent
in the limit of small interior angles. (On the unit sphere, if set and etc.; see Spherical law of cosines
In spherical trigonometry, the law of cosines (also called the cosine rule for sides) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry.
Given a unit sphere, a "sp ...
.)
Sine rules
The spherical law of sines
In trigonometry, the law of sines (sometimes called the sine formula or sine rule) is a mathematical equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,
\frac \,=\, \frac \,=\, \frac \,=\ ...
is given by the formula
These identities approximate the sine rule of plane trigonometry
Trigonometry () is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The fiel ...
when the sides are much smaller than the radius of the sphere.
Derivation of the cosine rule
The spherical cosine formulae were originally proved by elementary geometry and the planar cosine rule (Todhunter,[ Art.37). He also gives a derivation using simple coordinate geometry and the planar cosine rule (Art.60). The approach outlined here uses simpler ]vector
Vector most often refers to:
* Euclidean vector, a quantity with a magnitude and a direction
* Disease vector, an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematics a ...
methods. (These methods are also discussed at Spherical law of cosines
In spherical trigonometry, the law of cosines (also called the cosine rule for sides) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry.
Given a unit sphere, a "sp ...
.)
Consider three unit vectors drawn from the origin to the vertices of the triangle (on the unit sphere). The arc subtends an angle of magnitude at the centre and therefore . Introduce a Cartesian basis with along the -axis and in the -plane making an angle with the -axis. The vector projects to in the -plane and the angle between and the -axis is . Therefore, the three vectors have components:
The scalar product in terms of the components is
Equating the two expressions for the scalar product gives
This equation can be re-arranged to give explicit expressions for the angle in terms of the sides:
The other cosine rules are obtained by cyclic permutations.
Derivation of the sine rule
This derivation is given in Todhunter,[ (Art.40). From the identity and the explicit expression for given immediately above
Since the right hand side is invariant under a cyclic permutation of , , and the spherical sine rule follows immediately.
]
Alternative derivations
There are many ways of deriving the fundamental cosine and sine rules and the other rules developed in the following sections. For example, Todhunter[ gives two proofs of the cosine rule (Articles 37 and 60) and two proofs of the sine rule (Articles 40 and 42). The page on ]Spherical law of cosines
In spherical trigonometry, the law of cosines (also called the cosine rule for sides) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry.
Given a unit sphere, a "sp ...
gives four different proofs of the cosine rule. Text books on geodesy and spherical astronomy give different proofs and the online resources of MathWorld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science ...
provide yet more. There are even more exotic derivations, such as that of Banerjee who derives the formulae using the linear algebra of projection matrices and also quotes methods in differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and the group theory of rotations.
The derivation of the cosine rule presented above has the merits of simplicity and directness and the derivation of the sine rule emphasises the fact that no separate proof is required other than the cosine rule. However, the above geometry may be used to give an independent proof of the sine rule. The scalar triple product
In geometry and algebra, the triple product is a product of three 3- dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vect ...
, evaluates to in the basis shown. Similarly, in a basis oriented with the -axis along , the triple product , evaluates to . Therefore, the invariance of the triple product under cyclic permutations gives which is the first of the sine rules. See curved variations of the law of sines
In trigonometry, the law of sines (sometimes called the sine formula or sine rule) is a mathematical equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,
\frac \,=\, \frac \,=\, \frac \,=\ ...
to see details of this derivation.
Differential variations
When any three of the differentials ''da'', ''db'', ''dc'', ''dA'', ''dB'', ''dC'' are known, the following equations, which are found by differentiating the cosine rule and using the sine rule, can be used to calculate the other three by elimination:
Identities
Supplemental cosine rules
Applying the cosine rules to the polar triangle gives (Todhunter,[ Art.47), ''i.e.'' replacing by , by etc.,
]
Cotangent four-part formulae
The six parts of a triangle may be written in cyclic order as (). The cotangent, or four-part, formulae relate two sides and two angles forming four ''consecutive'' parts around the triangle, for example () or ). In such a set there are inner and outer parts: for example in the set () the inner angle is , the inner side is , the outer angle is , the outer side is . The cotangent rule may be written as (Todhunter,[ Art.44)
and the six possible equations are (with the relevant set shown at right):
To prove the first formula start from the first cosine rule and on the right-hand side substitute for from the third cosine rule:
The result follows on dividing by . Similar techniques
with the other two cosine rules give CT3 and CT5. The other three equations follow by applying rules 1, 3 and 5 to the polar triangle.
]
Half-angle and half-side formulae
With and
Another twelve identities follow by cyclic permutation.
The proof (Todhunter,[ Art.49) of the first formula starts from the identity using the cosine rule to express in terms of the sides and replacing the sum of two cosines by a product. (See sum-to-product identities.) The second formula starts from the identity the third is a quotient and the remainder follow by applying the results to the polar triangle.
]
Delambre analogies
The Delambre analogies (also called Gauss analogies) were published independently by Delambre, Gauss, and Mollweide in 1807–1809.
Another eight identities follow by cyclic permutation.
Proved by expanding the numerators and using the half angle formulae. (Todhunter,[ Art.54 and Delambre)
]
Napier's analogies
Another eight identities follow by cyclic permutation.
These identities follow by division of the Delambre formulae. (Todhunter,[ Art.52)
Taking quotients of these yields the ]law of tangents
In trigonometry, the law of tangents or tangent rule is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.
In Figure 1, , , and are the lengths of the three sides of the tr ...
, first stated by Persian mathematician Nasir al-Din al-Tusi
Muḥammad ibn Muḥammad ibn al-Ḥasan al-Ṭūsī (1201 – 1274), also known as Naṣīr al-Dīn al-Ṭūsī (; ) or simply as (al-)Tusi, was a Persians, Persian polymath, architect, Early Islamic philosophy, philosopher, Islamic medicine, phy ...
(1201–1274),
Napier's rules for right spherical triangles
When one of the angles, say , of a spherical triangle is equal to /2 the various identities given above are considerably simplified. There are ten identities relating three elements chosen from the set , , , , and .
Napier provided an elegant mnemonic aid for the ten independent equations: the mnemonic is called Napier's circle or Napier's pentagon (when the circle in the above figure, right, is replaced by a pentagon).
First, write the six parts of the triangle (three vertex angles, three arc angles for the sides) in the order they occur around any circuit of the triangle: for the triangle shown above left, going clockwise starting with gives . Next replace the parts that are not adjacent to (that is , , and ) by their complements and then delete the angle from the list. The remaining parts can then be drawn as five ordered, equal slices of a pentagram, or circle, as shown in the above figure (right). For any choice of three contiguous parts, one (the ''middle'' part) will be adjacent to two parts and opposite the other two parts. The ten Napier's Rules are given by
*sine of the middle part = the product of the tangents of the adjacent parts
*sine of the middle part = the product of the cosines of the opposite parts
The key for remembering which trigonometric function goes with which part is to look at the first vowel of the kind of part: middle parts take the sine, adjacent parts take the tangent, and opposite parts take the cosine.
For an example, starting with the sector containing we have:
The full set of rules for the right spherical triangle is (Todhunter,[ Art.62)
]
Napier's rules for quadrantal triangles
A quadrantal spherical triangle is defined to be a spherical triangle in which one of the sides subtends an angle of /2 radians at the centre of the sphere: on the unit sphere the side has length /2. In the case that the side has length /2 on the unit sphere the equations governing the remaining sides and angles may be obtained by applying the rules for the right spherical triangle of the previous section to the polar triangle with sides such that , etc. The results are:
Five-part rules
Substituting the second cosine rule into the first and simplifying gives:
Cancelling the factor of gives
Similar substitutions in the other cosine and supplementary cosine formulae give a large variety of 5-part rules. They are rarely used.
Cagnoli's Equation
Multiplying the first cosine rule by gives
Similarly multiplying the first supplementary cosine rule by yields
Subtracting the two and noting that it follows from the sine rules that produces Cagnoli's equation
which is a relation between the six parts of the spherical triangle.
Solution of triangles
Oblique triangles
The solution of triangles is the principal purpose of spherical trigonometry: given three, four or five elements of the triangle, determine the others. The case of five given elements is trivial, requiring only a single application of the sine rule. For four given elements there is one non-trivial case, which is discussed below. For three given elements there are six cases: three sides, two sides and an included or opposite angle, two angles and an included or opposite side, or three angles. (The last case has no analogue in planar trigonometry.) No single method solves all cases. The figure below shows the seven non-trivial cases: in each case the given sides are marked with a cross-bar and the given angles with an arc. (The given elements are also listed below the triangle). In the summary notation here such as ASA, A refers to a given angle and S refers to a given side, and the sequence of A's and S's in the notation refers to the corresponding sequence in the triangle.
*Case 1: three sides given (SSS). The cosine rule may be used to give the angles , , and but, to avoid ambiguities, the half angle formulae are preferred.
*Case 2: two sides and an included angle given (SAS). The cosine rule gives and then we are back to Case 1.
*Case 3: two sides and an opposite angle given (SSA). The sine rule gives and then we have Case 7. There are either one or two solutions.
*Case 4: two angles and an included side given (ASA). The four-part cotangent formulae for sets () and () give and , then follows from the sine rule.
*Case 5: two angles and an opposite side given (AAS). The sine rule gives and then we have Case 7 (rotated). There are either one or two solutions.
*Case 6: three angles given (AAA). The supplemental cosine rule may be used to give the sides , , and but, to avoid ambiguities, the half-side formulae are preferred.
*Case 7: two angles and two opposite sides given (SSAA). Use Napier's analogies for and ; or, use Case 3 (SSA) or case 5 (AAS).
The solution methods listed here are not the only possible choices: many others are possible. In general it is better to choose methods that avoid taking an inverse sine because of the possible ambiguity between an angle and its supplement. The use of half-angle formulae is often advisable because half-angles will be less than /2 and therefore free from ambiguity. There is a full discussion in Todhunter. The article Solution of triangles#Solving spherical triangles presents variants on these methods with a slightly different notation.
There is a full discussion of the solution of oblique triangles in Todhunter.[ See also the discussion in Ross. ]Nasir al-Din al-Tusi
Muḥammad ibn Muḥammad ibn al-Ḥasan al-Ṭūsī (1201 – 1274), also known as Naṣīr al-Dīn al-Ṭūsī (; ) or simply as (al-)Tusi, was a Persians, Persian polymath, architect, Early Islamic philosophy, philosopher, Islamic medicine, phy ...
was the first to list the six distinct cases (2–7 in the diagram) of a right triangle in spherical trigonometry.
Solution by right-angled triangles
Another approach is to split the triangle into two right-angled triangles. For example, take the Case 3 example where , , and are given. Construct the great circle from that is normal to the side at the point . Use Napier's rules to solve the triangle : use and to find the sides and and the angle . Then use Napier's rules to solve the triangle : that is use and to find the side and the angles and . The angle and side follow by addition.
Numerical considerations
Not all of the rules obtained are numerically robust in extreme examples, for example when an angle approaches zero or . Problems and solutions may have to be examined carefully, particularly when writing code to solve an arbitrary triangle.
Area and spherical excess
Consider an -sided spherical polygon and let denote the -th interior angle. The area of such a polygon is given by (Todhunter,[ Art.99)
For the case of a spherical triangle with angles , , and this reduces to Girard's theorem
where is the amount by which the sum of the angles exceeds radians, called the spherical excess of the triangle. This theorem is named after its author, Albert Girard. An earlier proof was derived, but not published, by the English mathematician ]Thomas Harriot
Thomas Harriot (; – 2 July 1621), also spelled Harriott, Hariot or Heriot, was an English astronomer, mathematician, ethnographer and translator to whom the theory of refraction is attributed. Thomas Harriot was also recognized for his con ...
. On a sphere of radius both of the above area expressions are multiplied by . The definition of the excess is independent of the radius of the sphere.
The converse result may be written as
Since the area of a triangle cannot be negative the spherical excess is always positive. It is not necessarily small, because the sum of the angles may attain 5 (3 for ''proper'' angles). For example,
an octant of a sphere is a spherical triangle with three right angles, so that the excess is /2. In practical applications it ''is'' often small: for example the triangles of geodetic survey typically have a spherical excess much less than 1' of arc.[This follows from ]Legendre's theorem on spherical triangles
In geometry, Legendre's theorem on spherical triangles, named after Adrien-Marie Legendre, is stated as follows:
: Let ABC be a spherical triangle on the ''unit'' sphere with ''small'' sides ''a'', ''b'', ''c''. Let A'B'C' be the planar triangle w ...
whenever the area of the triangle is small relative to the surface area of the entire Earth; see
(Chapters 2 and 9). On the Earth the excess of an equilateral triangle with sides 21.3 km (and area 393 km2) is approximately 1 arc second.
There are many formulae for the excess. For example, Todhunter,[ (Art.101—103) gives ten examples including that of L'Huilier:
where . This formula is reminiscent of ]Heron's formula
In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths Letting be the semiperimeter of the triangle, s = \tfrac12(a + b + c), the area is
A = \sqrt.
It is named after first-century ...
for planar triangles.
Because some triangles are badly characterized by
their edges (e.g., if ), it is often better to use
the formula for the excess in terms of two edges and their included angle
When triangle is a right triangle with right angle at , then and , so this reduces to
Angle deficit is defined similarly for hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For a ...
.
From latitude and longitude
The spherical excess of a spherical quadrangle bounded by the equator, the two meridians of longitudes and and the great-circle arc between two points with longitude and latitude and is
This result is obtained from one of Napier's analogies. In the limit where are all small, this reduces to the familiar trapezoidal area, .
The area of a polygon can be calculated from individual quadrangles of the above type, from (analogously) individual triangle bounded by a segment of the polygon and two meridians, by a line integral
In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integr ...
with Green's theorem
In vector calculus, Green's theorem relates a line integral around a simple closed curve to a double integral over the plane region (surface in \R^2) bounded by . It is the two-dimensional special case of Stokes' theorem (surface in \R^3) ...
, or via an equal-area projection
In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution su ...
as commonly done in GIS. The other algorithms can still be used with the side lengths calculated using a great-circle distance
The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the ...
formula.
See also
*Air navigation
The basic principles of air navigation are identical to general navigation, which includes the process of planning, recording, and controlling the movement of a craft from one place to another.
Successful air navigation involves piloting an airc ...
*Celestial navigation
Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface ...
* Ellipsoidal trigonometry
*Great-circle distance
The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the ...
or spherical distance
*Lenart sphere Lenart may refer to:
* Municipality of Lenart, Slovenia
* Lenart v Slovenskih Goricah, the seat of the Municipality of Lenart, Slovenia
* Lenart Regional Gifted Center, United States, school
* Lénárt sphere, an educational model for spherical ...
* Schwarz triangle
*Spherical geometry
300px, A sphere with a spherical triangle on it.
Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres.
Long studied for its practical applicati ...
*Spherical polyhedron
In geometry, a spherical polyhedron or spherical tiling is a tessellation, tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called ''spherical polygons''. A polyhedron whose vertices are equi ...
*Triangulation (surveying)
In surveying, triangulation is the process of determining the location of a point by measuring only angles to it from known points at either end of a fixed baseline by using trigonometry, rather than measuring distances to the point directly as ...
References
External links
* a more thorough list of identities, with some derivation
* a more thorough list of identities, with some derivation
TriSph
A free software to solve the spherical triangles, configurable to different practical applications and configured for gnomonic
"Revisiting Spherical Trigonometry with Orthogonal Projectors"
by Sudipto Banerjee. The paper derives the spherical law of cosines and law of sines using elementary linear algebra and projection matrices.
* by Okay Arik
"The Book of Instruction on Deviant Planes and Simple Planes"
a manuscript in Arabic that dates back to 1740 and talks about spherical trigonometry, with diagrams
Some Algorithms for Polygons on a Sphere
Robert G. Chamberlain, William H. Duquette, Jet Propulsion Laboratory. The paper develops and explains many useful formulae, perhaps with a focus on navigation and cartography.
Online computation of spherical triangles
{{Authority control