HOME

TheInfoList



OR:

The Ames Project was a research and development project that was part of the larger
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
to build the first atomic bombs during
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
. It was founded by Frank Spedding from Iowa State College in
Ames, Iowa Ames () is a city in Story County, Iowa, United States, located approximately north of Des Moines, Iowa, Des Moines in central Iowa. It is the home of Iowa State University (ISU). According to the 2020 United States census, 2020 census, Ames ha ...
as an offshoot of the Metallurgical Laboratory at the
University of Chicago The University of Chicago (UChicago, Chicago, or UChi) is a Private university, private research university in Chicago, Illinois, United States. Its main campus is in the Hyde Park, Chicago, Hyde Park neighborhood on Chicago's South Side, Chic ...
devoted to
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
and
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the ...
, but became a separate project in its own right. The Ames Project developed the Ames Process, a method for preparing pure uranium metal that the Manhattan Project needed for its atomic bombs and
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s. Between 1942 and 1945, it produced over of uranium metal. It also developed methods of preparing and casting
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
,
cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
and
beryllium Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
. In October 1945 Iowa State College received the Army-Navy "E" Award for Excellence in Production, an award usually only given to industrial organizations. In 1947 it became the Ames Laboratory, a national laboratory under the Atomic Energy Commission.


Background

The discovery of the
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
by
James Chadwick Sir James Chadwick (20 October 1891 – 24 July 1974) was an English nuclear physicist who received the Nobel Prize in Physics in 1935 for his discovery of the neutron. In 1941, he wrote the final draft of the MAUD Report, which inspired t ...
in 1932, followed by that of
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
by German chemists
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the field of radiochemistry. He is referred to as the father of nuclear chemistry and discoverer of nuclear fission, the science behind nuclear reactors and ...
and Fritz Strassmann in 1938, and its theoretical explanation (and naming) by
Lise Meitner Elise Lise Meitner ( ; ; 7 November 1878 – 27 October 1968) was an Austrian-Swedish nuclear physicist who was instrumental in the discovery of nuclear fission. After completing her doctoral research in 1906, Meitner became the second woman ...
and Otto Frisch soon after, opened up the possibility of a controlled nuclear chain reaction with
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
. On 20 December 1941, soon after the Japanese attack on Pearl Harbor that brought the United States into
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
, the
Nobel Prize The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
-winning physicist Arthur H. Compton was placed in charge of the
plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
project, the objective of which was to produce reactors to convert uranium into plutonium, to find ways to chemically separate plutonium from the uranium, and ultimately to design and build an atomic bomb. This became the
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
. Although a successful reactor had not yet been built, the scientists had already produced several different but promising design concepts. Compton established the project's Metallurgical Laboratory at the
University of Chicago The University of Chicago (UChicago, Chicago, or UChi) is a Private university, private research university in Chicago, Illinois, United States. Its main campus is in the Hyde Park, Chicago, Hyde Park neighborhood on Chicago's South Side, Chic ...
in February 1942. Its mission was to build
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s to create plutonium that would be used in atomic bombs. For advice on assembling the laboratory's Chemistry Division, Compton, a physicist, turned to Herbert McCoy, who had considerable experience with
isotopes Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but ...
and radioactive elements. McCoy recommended Frank Spedding from Iowa State College in
Ames, Iowa Ames () is a city in Story County, Iowa, United States, located approximately north of Des Moines, Iowa, Des Moines in central Iowa. It is the home of Iowa State University (ISU). According to the 2020 United States census, 2020 census, Ames ha ...
, as an expert on the rare-earth elements, which were chemically similar to the
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
series that included uranium and plutonium. Compton asked Spedding to become the head of the Metallurgical Laboratory's Chemistry Division. Owing to a lack of space at the University of Chicago, Spedding proposed to organize part of the Chemistry Division at Iowa State College, where he had colleagues who were willing to help. It was agreed that Spedding would spend half of each week in Ames, and half in Chicago. The intention was that staff at Ames would eventually move to Chicago when space became available, but this never happened. The success of the Ames Project ensured that it became a separate laboratory within the Manhattan Project.


Organization

Spedding started by recruiting two fellow scientists at Iowa State College to become his associate directors; Harley A. Wilhelm, an expert in spectrochemistry and metallurgy, as the head of the Ames Project's Metallurgy Division, and Iral B. Johns as the head of the Plutonium Division. Under them were eight section chiefs. The Ames Project grew to over 90 scientific staff. The total number of staff eventually exceeded 500. Senior staff would meet on Sunday mornings to review the previous week's work and set goals for the week ahead, a process that came to be called "Speddinars". At first Spedding had to depart for Chicago soon after each meeting, but in early 1943 he was succeeded as head of the chemistry division at the Metallurgical Laboratory by James Franck, allowing Spedding to spend more time at Ames. He remained an associate director at the Metallurgical Laboratory. Spedding was fortunate in having the full support of Charles E. Friley, the president of Iowa State College, even though the nature of the work could not at first be disclosed to him while security checks were being undertaken. Once these were completed, Friley brought in Harold V. Gaskill, the dean of science, as the Ames Project's administrator. The
United States Army Corps of Engineers The United States Army Corps of Engineers (USACE) is the military engineering branch of the United States Army. A direct reporting unit (DRU), it has three primary mission areas: Engineer Regiment, military construction, and civil wo ...
took control of the Manhattan Project in June 1942, and the Ames Project in late 1942.


Uranium


Ames Process

The first item on the agenda was to find uranium for the nuclear reactor that Enrico Fermi was proposing to build. Uranium ore was readily available. Some of high-grade ore from the
Belgian Congo The Belgian Congo (, ; ) was a Belgian colonial empire, Belgian colony in Central Africa from 1908 until independence in 1960 and became the Republic of the Congo (Léopoldville). The former colony adopted its present name, the Democratic Repu ...
was in storage in a warehouse at Port Richmond on
Staten Island Staten Island ( ) is the southernmost of the boroughs of New York City, five boroughs of New York City, coextensive with Richmond County and situated at the southernmost point of New York (state), New York. The borough is separated from the ad ...
. About per annum was being mined at the Eldorado Mine at Port Radium on the Great Bear Lake near the Arctic Circle in Canada's
Northwest Territories The Northwest Territories is a federal Provinces and territories of Canada, territory of Canada. At a land area of approximately and a 2021 census population of 41,070, it is the second-largest and the most populous of Provinces and territorie ...
. The Eldorado company also operated a refinery at
Port Hope, Ontario Port Hope is a municipality in Southern Ontario, Canada, about east of Toronto and west of Kingston, Ontario, Kingston. It is at the mouth of the Ganaraska River on the north shore of Lake Ontario, in the west end of Northumberland County, Onta ...
, where Canadian and Belgian ore was refined. The Manhattan Project's estimated requirements for 1942 were , of which Compton required just for his proposed nuclear reactor. The major problem was impurities in the uranium oxide, which could act as neutron poisons and prevent a nuclear chain reaction. Due to the presence of impurities, references published before 1942 typically listed its melting point at around when pure uranium metal actually melts at . Peter P. Alexander, at Metal Hydrides Incorporated, gave in 1938 the first indications that the melting point of uranium was "as low as and even somewhat lower". The most effective way to purify uranium oxide in a laboratory was to take advantage of the fact that uranium nitrate is soluble in
ether In organic chemistry, ethers are a class of compounds that contain an ether group, a single oxygen atom bonded to two separate carbon atoms, each part of an organyl group (e.g., alkyl or aryl). They have the general formula , where R and R� ...
. Scaling this process up for industrial production was a dangerous proposition; ether was explosive, and a factory using large quantities was likely to blow up or burn down. Compton and Spedding turned to Mallinckrodt in St. Louis,
Missouri Missouri (''see #Etymology and pronunciation, pronunciation'') is a U.S. state, state in the Midwestern United States, Midwestern region of the United States. Ranking List of U.S. states and territories by area, 21st in land area, it border ...
, which had experience with ether. Spedding went over the details with Mallinckrodt's chemical engineers, Henry V. Farr and John R. Ruhoff, on 17 April 1942. Within a few months, sixty tons of highly pure uranium oxide was produced. The only uranium metal available commercially was produced by the Westinghouse Electric and Manufacturing Company, using a photochemical process. Uranium oxide was reacted with potassium fluoride in large vats on the roof of Westinghouse's plant in Bloomfield, New Jersey. This produced ingots the size of a quarter that were sold for around $20 per gram. But Edward Creutz, the head of the Metallurgical Laboratory's group responsible for fabricating the uranium, wanted a metal sphere the size of an orange for his experiments. With Westinghouse's process, it would have cost $200,000 and taken a year to produce. The hydride or "hydramet" process, developed by Alexander used
calcium hydride Calcium hydride is the chemical compound with the formula , an alkaline earth hydride. This grey powder (white if pure, which is rare) reacts vigorously with water, liberating hydrogen gas. is thus used as a drying agent, i.e. a desiccant. is ...
as the
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are common reducing agents include hydrogen, carbon ...
for the conversion of uranium ore to metal. By this means the Metal Hydrides plant in
Beverly, Massachusetts Beverly is a city in Essex County, Massachusetts, United States, and a suburb of Boston. The population was 42,670 at the time of the 2020 United States census. A resort, residential, and manufacturing community on the Massachusetts North Sho ...
, managed to produce a few pounds of uranium metal. Unfortunately, the calcium hydride contained unacceptable amounts of
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
, a neutron poison, making the metal unsuitable for use in a reactor. Some months would pass before Clement J. Rodden from the
National Bureau of Standards The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical sc ...
and Union Carbide figured out a means to produce sufficiently pure calcium hydride. Spedding and Wilhelm began looking for ways to create the uranium metal. At the time, it was produced in the form of a powder, and was highly pyrophoric. It could be pressed and sintered and stored in cans, but to be useful, it needed to be melted and cast. Casting presented difficulty because uranium corroded crucibles of beryllium, magnesia and graphite. To produce uranium metal, they tried reducing uranium oxide with hydrogen, but this did not work. While most of the neighboring elements on the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
can be reduced to form pure metal and
slag The general term slag may be a by-product or co-product of smelting (pyrometallurgical) ores and recycled metals depending on the type of material being produced. Slag is mainly a mixture of metal oxides and silicon dioxide. Broadly, it can be c ...
, uranium did not behave this way. In June 1942 they then tried reducing the uranium with carbon in a hydrogen atmosphere, with only moderate success. They then tried aluminum, magnesium and calcium, all of which were unsuccessful. The following month the Ames team found that molten uranium could be cast in a
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
container. Although graphite was known to react with uranium, this could be managed because the carbide formed only where the two touched. Around this time, someone from the Manhattan Project's Berkeley Radiation Laboratory brought a cube of uranium tetrafluoride—the uranium compound being used in the calutrons—to the Metallurgical Laboratory to discuss the possibility of using it rather than uranium oxide in the reactor. Spedding began wondering whether it would be possible to produce uranium metal from this
salt In common usage, salt is a mineral composed primarily of sodium chloride (NaCl). When used in food, especially in granulated form, it is more formally called table salt. In the form of a natural crystalline mineral, salt is also known as r ...
, bypassing the problems with oxygen. He took the cube back to Ames, and asked Wilhelm to investigate. The task was assigned to an associate, Wayne H. Keller. He investigated a process (now known as the Ames process) originally developed by J. C. Goggins and others at the
University of New Hampshire The University of New Hampshire (UNH) is a Public university, public Land-grant university, land-grant research university with its main campus in Durham, New Hampshire, United States. It was founded and incorporated in 1866 as a land grant coll ...
in 1926. This involved mixing uranium tetrachloride (from which
Eugène-Melchior Péligot Eugène-Melchior Péligot (24 March 1811 – 15 April 1890), also known as Eugène Péligot, was a French chemist who isolated the first sample of uranium metal in 1841. Péligot proved that the black powder of Martin Heinrich Klaproth was not ...
first prepared pure uranium by reduction with
potassium Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
in 1841) and
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
metal in a calcium oxide-lined steel pressure vessel (known as a "bomb") and heating it. Keller was able to reproduce Goggin's results on 3 August 1942, creating a button of very pure uranium metal. The process was then scaled up. By September, bombs were being prepared in steel pipes long, lined with lime to prevent corrosion, and containing up to of uranium tetrafluoride. C. F. Gray took these ingots and cast them into a billet of pure uranium.


Production

On 24 September 1942, Wilhelm took the ingot to Spedding at the Metallurgical Laboratory in Chicago and presented it to Compton, whose first reaction was of disbelief. He thought it must be hollow. Spedding had the ingot cut open. It was not hollow. A few days later, the Metallurgical Laboratory's director, Richard L. Doan, went to Ames, where he drew up an Office of Scientific Research and Development (OSRD) contract for the Ames Project to produce of pure uranium metal a day. This would be a pilot plant, with the process eventually being transferred to industry. The OSRD contract was superseded by a Manhattan Project contract in November 1942. The initial contract was for $50,000. By 31 December 1945, the face value of contracts let to the Ames Project totaled $6.907 million; but the work was carried out for $4 million. Wilhelm found an old wooden building on the southeastern edge of the campus. It had been a home economics building until 1926, and then had served as a women's gymnasium until a new one was built in 1941; by 1942 it was mainly used for storage. The building was handed over to the Ames Project, and the wooden floor replaced with a concrete one, much to the disappointment of the university architect, who had been trying for some years to get the place torn down. The building officially became known as the Physical Chemistry Annex; local people called it "Little Ankeny", after the nearby town of Ankeny, Iowa, where there was an ordnance plant. Looking for machine tools, Wilhelm found a machine shop for sale in Ames. The owner, Bill Maitland, had once made gardening tools, but could no longer obtain the metal he needed due to wartime rationing. Wilhelm bought it for $8,000. The Metallurgical Laboratory supplied two large 40-
kilowatt The watt (symbol: W) is the unit of Power (physics), power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantification (science), quantify the rate of Work ...
reduction furnaces. The Ames Project supplied two tons of uranium metal to the Metallurgical Laboratory for the construction of
Chicago Pile-1 Chicago Pile-1 (CP-1) was the first artificial nuclear reactor. On 2 December 1942, the first human-made self-sustaining nuclear chain reaction was initiated in CP-1 during an experiment led by Enrico Fermi. The secret development of the react ...
, the world's first nuclear reactor, which achieved criticality on 2 December 1942. The Ames Project would later supply over 90 percent of the uranium for the X-10 Graphite Reactor at the Clinton Engineer Works in Oak Ridge, Tennessee. Production rose from of uranium metal per day in December 1942 to per day by the middle of January 1943. For production, the process was changed to use magnesium instead of calcium; magnesium was cheaper, more readily available, and purer. But it was also harder to start the reaction with magnesium than calcium, requiring more heating. The uranium tetrafluoride, known as green salt because of its characteristic color, was supplied by Mallinckrodt,
DuPont Dupont, DuPont, Du Pont, duPont, or du Pont may refer to: People * Dupont (surname) Dupont, also spelled as DuPont, duPont, Du Pont, or du Pont is a French surname meaning "of the bridge", historically indicating that the holder of the surname re ...
and Harshaw Chemical, and was ground up on arrival, as was the magnesium. Bombs were normally pipes, long, although pipes, long, could be used to produce ingots. They were heated to for 40 to 60 minutes, after which the mixture spontaneously reacted, reaching temperatures of . A microphone was used to detect the ignition, and the bomb would be moved to a spray chamber to cool. If everything worked, uranium metal biscuit and magnesium fluoride slag would be produced. After the bomb cooled, it would be opened and hammered until the two separated. The resulting biscuit would be stamped, and sent off to be cast. Casting re-shaped the uranium into ingots and removed impurities. The metal biscuits were melted in a graphite crucible and poured into a mold. This produced rods between in diameter and long. The rods were stamped with a number and placed in wooden boxes for shipping to the Metallurgical Laboratory. From there they were sent to the Oak Ridge or the Hanford Site. By July 1943, the Ames Project was producing of uranium metal per month. The cost of a pound of uranium metal fell from $1,000 to around one dollar. Starting in July 1943, Mallinckrodt, Electromet, and DuPont began producing uranium by the Ames process, and Ames phased out its own production by early 1945. The Ames Project began a program of recovering uranium metal from scrap. A new building, known as Physical Chemistry Annex 2, was constructed for the purpose in 1944. Uranium turnings were washed, dried, passed through a magnet to remove iron impurities, and pressed into briquettes. They were then sent to be remelted. The job was handed over to Metal Hydrides and a recovery plant at the Hanford Site in December 1945, by which time the Ames Project had recovered of scrap metal. In all, the Ames Project produced over of uranium metal. All production ceased on 5 August 1945, as did that at Metal Hydrides and DuPont, leaving Mallinckrodt as the only producer of uranium metal in the early post-war period.


Other metals

Beginning in 1942, along with uranium production operations, the Ames Project conducted a variety of metallurgical research related to the separation and purification of thorium, beryllium and rare-earth metals, such as cerium.


Thorium

In 1942, Glenn T. Seaborg established that when
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
was bombarded with neutrons, it could be transformed into
fissile In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
uranium-233 Uranium-233 ( or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a Nuclear fuel, reactor fuel. It has been used successfully ...
. This was another possible route to an atomic bomb, especially if it turned out that uranium-233 could be more easily separated from thorium than plutonium from uranium. It was not pursued further because uranium-233 production would have required a complete redesign of the Hanford reactors; but in April 1944 the Metallurgical Laboratory's Thorfin R. Rogness calculated that a nuclear reactor containing thorium could produce enough uranium-233 to sustain its reaction without adding anything but more thorium. This was very interesting, because at the time it was thought that uranium might be scarce, whereas thorium was at least ten times more plentiful. In July and August 1943, the Ames Project attempted to create thorium metal using something similar to the Ames Process. This was unsuccessful, because thorium has a much higher melting point than uranium. Efforts continued into 1944, and it was found that with a
zinc chloride Zinc chloride is an Inorganic chemistry, inorganic chemical compound with the chemical formula, formula ZnCl2·''n''H2O, with ''n'' ranging from 0 to 4.5, forming water of hydration, hydrates. Zinc chloride, anhydrous and its hydrates, are colo ...
booster they could produce a zinc-thorium
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
. Heating to in a graphite crucible could then melt the zinc, which could be drawn off. This left the thorium, which was cast into ingots in beryllia crucibles. Some was produced by 31 December 1945. Thorium sold for $3 a gram before the war; by its end, the Ames Project was producing it for less than 5¢ a gram.


Beryllium

Beryllium was used by the Manhattan Project as a neutron reflector, and as a component of modulated neutron initiators. Only one firm produced it commercially in the United States, Brush Beryllium in Lorain, Ohio. The Ames Project began working on a production process in December 1943, reducing beryllium fluoride in a bomb with metallic magnesium and a sulphur booster. The main difficulty with working with beryllium was its high toxicity. A closed bomb was used to minimize the possibility of producing toxic beryllium dust. The process worked, but the high temperatures and pressures created by the magnesium sulphide meant that it was potentially explosive. An alternative was then developed using beryllium fluoride in a bomb with metallic calcium and a lead chloride booster. The metal was cast in a vacuum. Research was still ongoing when the war ended.


Cerium

In mid-1944, the Ames Project was asked to produce cerium. This was being used by the laboratories at Berkeley and Los Alamos for cerium sulphide, which was used in crucibles to cast plutonium. Again, the bomb method was used, this time to reduce anhydrous cerium chloride with calcium using an iodine booster. A special "dry room" was constructed for drying out the cerium chloride using
hydrogen chloride The Chemical compound, compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hyd ...
gas. The resulting metal contained calcium and magnesium impurity, so it had to be recast to remove them. The opportunity was taken to make it into diameter rods long, the desired shape. Because cerium is so reactive, the remelting was done in a vacuum, using a calcium oxide or
magnesium oxide Magnesium oxide (MgO), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions ...
crucible. The first shipment of cerium metal was made in August 1944. The Ames Laboratory produced of extremely (more than 99%) pure cerium by August 1945, when production ended.


Alloys

Since uranium metal had been so scarce before the war, little was known about its metallurgy, but with uranium being used in the reactors, the Manhattan Project became keenly interested in its properties. In particular, with water being used for cooling, there was speculation about alloys with high thermal conductivity and resistance to corrosion. The Ames Project produced and tested uranium carbide, which had a potential to be used as a fuel in reactors instead of metallic uranium. So too was
bismuth Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
, because of its low
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, wh ...
cross section, so the Ames Project produced and tested uranium-bismuth alloys. At one point a proposal was on the table to protect the uranium in a reactor from corrosion by jacketing it with
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
. The Ames Project therefore studied uranium-copper alloys, which would occur where the uranium met the copper jacket. In practice, the uranium was canned in aluminum; this too was studied, as were alloys with tin, which was used to solder the cans. Tests were also carried out with alloys of uranium with beryllium, calcium, cobalt, magnesium, manganese and thorium, which were being produced or in use elsewhere in the Ames Project. Attempts were made to separate plutonium from uranium through metallurgy, exploiting plutonium's greater affinity with gold and silver, but the Manhattan Project chose to use the bismuth phosphate process, a chemical separation method, instead. The Ames Project also studied thorium, alloying it with bismuth, carbon, chromium, iron, manganese, molybdenum, nickel, oxygen, tin, tungsten and uranium, and alloyed beryllium with bismuth, lead, thorium, uranium and zinc.


Chemistry

The chemistry of uranium was the focus of multiple studies by the Ames Project. The properties of the various uranium oxides and uranium hydride were investigated. The latter of was particular interest because at one point the Los Alamos Laboratory considered using it in an atomic bomb instead of metallic uranium, but the idea was found to be inefficient, and was shelved. A process was developed to recovery
depleted uranium Depleted uranium (DU), also referred to in the past as Q-metal, depletalloy, or D-38, is uranium with a lower content of the fissile isotope Uranium-235, 235U than natural uranium. The less radioactive and non-fissile Uranium-238, 238U is the m ...
metal from the uranium tetrafluoride left over from the
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
isotope separation process and uranium hexafluoride left over from the gaseous diffusion process. This was operated as a pilot plant that produced kilogram quantities, before being turned over to the Manhattan Project's SAM Laboratories for implementation on an industrial scale at Oak Ridge. If the chemistry and metallurgy of uranium was poorly understood, that of plutonium was practically unknown, as it had only existed in microscopic amounts. Samples began arriving from the reactors in 1943, and although the locus of the Manhattan Project's investigations into plutonium chemistry was at the Metallurgical Laboratory, the Ames Project investigated methods of separating plutonium metal from uranium and fission products.


Post-war

Major General Leslie R. Groves Jr., the director of the Manhattan Project, visited Iowa State College on 12 October 1945, and presented the Army-Navy "E" Award for Excellence in Production for its part in producing uranium for the Manhattan Project. It was unprecedented for a college or university to receive this award, which was usually given to industrial organizations. The award came in the form of a banner sporting four white stars, representing two and a half years of service to the war effort. , the award was on display at Iowa State University in Spedding Hall. The Iowa State Board of Education created the Institute of Atomic Research (IAR) as a coordinating body for research throughout the
Midwestern United States The Midwestern United States (also referred to as the Midwest, the Heartland or the American Midwest) is one of the four census regions defined by the United States Census Bureau. It occupies the northern central part of the United States. It ...
on 1 November 1945, with Spedding as its director. The Manhattan Project continued to fund the activities of the Ames Project, but with the passage of the Atomic Energy Act of 1946, responsibility passed to the newly created Atomic Energy Commission (AEC) on 1 January 1947. On 17 May 1947, the AEC awarded the contract to run the Ames Laboratory, which now had the status of a national laboratory, to Iowa State College. The laboratory remained on the Iowa State College campus, and its faculty and graduate students made up most of the staff. Spedding remained its director until he retired in 1968. Administration was delegated to the IAR. Permanent buildings were constructed that were opened in 1948 and 1950, and subsequently named Wilhelm Hall and Spedding Hall. The Ames Laboratory retained a focus on chemistry and metallurgy, particularly of the rare-earth metals.


Notes


References

* * * * * * * * * * * * * * * * *


External links

* * (Video) * (Photo gallery) {{Portal bar, History of Science, Nuclear technology, Iowa, Chemistry Iowa State University History of the Manhattan Project