In
mathematics, a
group is said to be almost simple if it contains a non-
abelian
Abelian may refer to:
Mathematics Group theory
* Abelian group, a group in which the binary operation is commutative
** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms
* Metabelian group, a grou ...
simple group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service.
The da ...
and is contained within the
automorphism group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is th ...
of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group ''A'' is almost simple if there is a (non-abelian) simple group ''S'' such that
Examples
* Trivially, non-abelian simple groups and the full group of automorphisms are almost simple, but proper examples exist, meaning almost simple groups that are neither simple nor the full automorphism group.
* For
or
the
symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
is the automorphism group of the simple
alternating group
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or
Basic pr ...
so
is almost simple in this trivial sense.
* For
there is a proper example, as
sits properly between the simple
and
due to the
exceptional outer automorphism of
Two other groups, the
Mathieu group and the
projective general linear group also sit properly between
and
Properties
The full automorphism group of a non-abelian simple group is a
complete group (the conjugation map is an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
to the automorphism group), but proper
subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
s of the full automorphism group need not be complete.
Structure
By the
Schreier conjecture, now generally accepted as a
corollary
In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
of the
classification of finite simple groups
In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or els ...
, the outer automorphism group of a
finite
Finite is the opposite of infinite. It may refer to:
* Finite number (disambiguation)
* Finite set, a set whose cardinality (number of elements) is some natural number
* Finite verb
Traditionally, a finite verb (from la, fīnītus, past partici ...
simple group is a
solvable group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group (mathematics), group that can be constructed from abelian groups using Group extension, extensions. Equivalently, a solvable group is a ...
. Thus a finite almost simple group is an extension of a solvable group by a simple group.
See also
*
Quasisimple group
*
Semisimple group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direc ...
Notes
{{reflist, group=note
External links
Almost simple groupat the Group Properties wiki
Properties of groups