In
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, a representation of an
associative algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
is a
module for that algebra. Here an associative algebra is a (not necessarily
unital)
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
. If the algebra is not unital, it may be made so in a standard way (see the
adjoint functors
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra.
Examples
Linear complex structure
One of the simplest non-trivial examples is a
linear complex structure
In mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, - \text_V . Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to re ...
, which is a representation of the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s C, thought of as an associative algebra over the
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s R. This algebra is realized concretely as
which corresponds to . Then a representation of C is a real
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'', together with an action of C on ''V'' (a map
). Concretely, this is just an action of , as this generates the algebra, and the operator representing (the
image
An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of in End(''V'')) is denoted ''J'' to avoid confusion with the
identity matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
''I''.
Polynomial algebras
Another important basic class of examples are representations of
polynomial algebras, the free commutative algebras – these form a central object of study in
commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
and its geometric counterpart,
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
. A representation of a polynomial algebra in variables over the
field ''K'' is concretely a ''K''-vector space with commuting operators, and is often denoted
meaning the representation of the abstract algebra