3571 Milanštefánik
   HOME

TheInfoList



OR:

3000 (three thousand) is the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).


Selected numbers in the range 3001–3999


3001 to 3099

* 3001 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
; divides the
Euclid number In mathematics, Euclid numbers are integers of the form , where ''p'n'' # is the ''n''th primorial, i.e. the product of the first ''n'' prime numbers. They are named after the ancient Greek mathematician Euclid, in connection with Euclid ...
2999# + 1 * 3003 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
, only number known to appear eight times in
Pascal's triangle In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Bla ...
; no number is known to appear more than eight times other than 1. (see Singmaster's conjecture) * 3019 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
,
happy prime In number theory, a happy number is a number which eventually reaches 1 when the number is replaced by the sum of the square of each digit. For instance, 13 is a happy number because 1^2+3^2=10, and 1^2+0^2=1. On the other hand, 4 is not a happy ...
* 3023 – 84th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, 51st
safe prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
* 3025 = 552, sum of the cubes of the first ten integers,
centered octagonal number A centered octagonal number is a centered number, centered figurate number that represents an octagon with a dot in the center and all other dots surrounding the center dot in successive octagonal layers.. The centered octagonal numbers are th ...
,
dodecagonal number In mathematics, a dodecagonal number is a figurate number that represents a dodecagon. The dodecagonal number for ''n'' is given by the formula :D_=5n^2 - 4n The first few dodecagonal numbers are: : 0, 1, 12, 33, 64, 105, 156, 217, 288, ...
* 3037 –
star number In mathematics, a star number is a centered figurate number, a centered hexagram (six-pointed star), such as the Star of David, or the board Chinese checkers is played on. The ''n''th star number is given by the formula ''Sn'' = 6''n''(''n' ...
,
cousin prime In number theory, cousin primes are prime numbers that differ by four. Compare this with twin primes, pairs of prime numbers that differ by two, and sexy primes, pairs of prime numbers that differ by six. The cousin primes (sequences and in OE ...
with 3041 * 3045 – sum of the integers 196 to 210 ''and'' sum of the integers 211 to 224 * 3046 –
centered heptagonal number A centered heptagonal number is a centered figurate number that represents a heptagon with a dot in the center and all other dots surrounding the center dot in successive heptagonal layers. The centered heptagonal number for ''n'' is given by ...
* 3052 – decagonal number * 3059 –
centered cube number A centered cube number is a centered figurate number that counts the points in a three-dimensional pattern formed by a point surrounded by concentric cubical layers of points, with points on the square faces of the th layer. Equivalently, it ...
* 3061 – prime of the form 2p-1 * 3063 –
perfect totient number In number theory, a perfect totient number is an integer that is equal to the sum of its iterated totients. That is, one applies the totient function to a number ''n'', apply it again to the resulting totient, and so on, until the number 1 is rea ...
* 3067 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3071 –
Thabit number In number theory, a Thabit number, Thâbit ibn Qurra number, or 321 number is an integer of the form 3 \cdot 2^n - 1 for a non-negative integer ''n''. The first few Thabit numbers are: : 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 614 ...
* 3072 –
3-smooth In number theory, an ''n''-smooth (or ''n''-friable) number is an integer whose prime factors are all less than or equal to ''n''. For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 72 and 15750 = 2 ...
number (210×3) * 3075 –
nonagonal number A nonagonal number, or an enneagonal number, is a figurate number that extends the concept of triangular number, triangular and square numbers to the nonagon (a nine-sided polygon). However, unlike the triangular and square numbers, the patterns in ...
* 3078 – 18th
pentagonal pyramidal number A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of s ...
* 3080 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...
* 3081 – triangular number, 497th
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
* 3087 – sum of first 40 primes


3100 to 3199

* 3109 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3119 –
safe prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
* 3121 –
centered square number In elementary number theory, a centered square number is a Centered polygonal number, centered figurate number that gives the number of dots in a Square (geometry), square with a dot in the center and all other dots surrounding the center dot i ...
,
emirp An emirp (an anadrome of ''prime'') is a prime number that results in a different prime when its decimal digits are reversed. This definition excludes the related palindromic primes. The term ''reversible prime'' is used to mean the same as emirp, ...
, largest minimal prime in
quinary Quinary (base 5 or pental) is a numeral system with five as the base. A possible origination of a quinary system is that there are five digits on either hand. In the quinary place system, five numerals, from 0 to 4, are used to represent any ...
. * 3125 – a solution to the expression n^n, where n=5 (3125=5^5). * 3136 = 562, palindromic in ternary (110220113),
tribonacci number In mathematics, the Fibonacci numbers form a sequence defined recursively by: :F_n = \begin 0 & n = 0 \\ 1 & n = 1 \\ F_ + F_ & n > 1 \end That is, after two starting values, each number is the sum of the two preceding numbers. The Fibonacci seq ...
* 3137 –
Proth prime A Proth number is a natural number ''N'' of the form N = k \times 2^n+1 where ''k'' and ''n'' are positive integers, ''k'' is odd and 2^n > k. A Proth prime is a Proth number that is prime. They are named after the French mathematician Françoi ...
, both a left- and right-
truncatable prime In number theory, a left-truncatable prime is a prime number which, in a given base, contains no 0, and if the leading ("left") digit is successively removed, then all resulting numbers are prime. For example, 9137, since 9137, 137, 37 and 7 are ...
* 3149 –
highly cototient number In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above 1 and has more solutions to the equation :x - \phi(x) = k than any other integer below k and above 1. Here, \phi is Euler's totient func ...
* 3150 = 153 - 152 * 3155 – member of the
Mian–Chowla sequence In mathematics, the Mian–Chowla sequence is an integer sequence defined recursively in the following way. The sequence starts with :a_1 = 1. Then for n>1, a_n is the smallest integer such that every pairwise sum :a_i + a_j is distinct, for ...
* 3159 = number of trees with 14 unlabeled nodes * 3160 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
* 3167 – safe prime * 3169 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
, Cuban prime of the form x=y+1. *3192 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...


3200 to 3299

* 3203 – safe prime * 3207 – number of compositions of 14 whose run-lengths are either weakly increasing or weakly decreasing * 3229 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3240 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
* 3248 – member of a Ruth-Aaron pair with 3249 under second definition, largest number whose
factorial In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times ...
is less than 1010000 – hence its factorial is the largest certain advanced computer programs can handle. *3249 = 572, palindromic in base 7 (123217), centered octagonal number, member of a Ruth–Aaron pair with 3248 under second definition * 3253 – sum of eleven consecutive primes (269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331) * 3256 – centered heptagonal number * 3259 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
, completes the ninth
prime quadruplet In number theory, a prime quadruplet (sometimes called a prime quadruple) is a set of four prime numbers of the form This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4. P ...
set * 3264 – solution to Steiner's conic problem: number of smooth conics tangent to 5 given conics in general position * 3266 – sum of first 41 primes, 523rd
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
* 3276 –
tetrahedral number A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid (geometry), pyramid with a triangular base and three sides, called a tetrahedron. The th tetrahedral number, , is the sum of the first triangular ...
* 3277 – 5th
super-Poulet number In number theory, a super-Poulet number is a Poulet number, or pseudoprime to base 2, whose every divisor d divides 2^d - 2. For example, 341 is a super-Poulet number: it has positive divisors (1, 11, 31, 341), and we have: :(211 − 2) / 11 = 2 ...
, decagonal number * 3279 – first composite Wieferich number * 3281 –
octahedral number In number theory, an octahedral number is a figurate number that represents the number of spheres in an octahedron formed from close-packed spheres. The th octahedral number O_n can be obtained by the formula:. :O_n=. The first few octahedral ...
, centered square number * 3286 – nonagonal number * 3299 – 85th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, super-prime


3300 to 3399

* 3306 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...
* 3307 –
balanced prime In number theory, a balanced prime is a prime number with equal-sized prime gaps above and below it, so that it is equal to the arithmetic mean of the nearest primes above and below. Or to put it algebraically, the nth prime number p_n is a balanced ...
* 3313 – balanced prime,
star number In mathematics, a star number is a centered figurate number, a centered hexagram (six-pointed star), such as the Star of David, or the board Chinese checkers is played on. The ''n''th star number is given by the formula ''Sn'' = 6''n''(''n' ...
* 3319 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
,
happy number In number theory, a happy number is a number which eventually reaches 1 when the number is replaced by the sum of the square of each digit. For instance, 13 is a happy number because 1^2+3^2=10, and 1^2+0^2=1. On the other hand, 4 is not a happy ...
* 3321 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
* 3329 – 86th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, Proth prime, member of the
Padovan sequence In number theory, the Padovan sequence is the integer sequence, sequence of integers ''P''(''n'') defined. by the initial values P(0) = P(1) = P(2) = 1, and the recurrence relation P(n) = P(n-2)+P(n-3). The first few values of ''P''(''n'') are ...
* 3354 – member of the Mian–Chowla sequence * 3358 – sum of the squares of the first eleven primes * 3359 – 87th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
,
highly cototient number In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above 1 and has more solutions to the equation :x - \phi(x) = k than any other integer below k and above 1. Here, \phi is Euler's totient func ...
* 3360 – largely composite number * 3363/2378 ≈ √2 * 3364 = 582 * 3367 = 153 - 23 = 163 - 93 = 343 - 333 * 3375 = 153, palindromic in base 14 (133114), 15th
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
* 3389 – 88th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...


3400 to 3499

* 3403 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
* 3407 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3413 – 89th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, sum of the first 5 nn: 3413 = 11 + 22 + 33 + 44 + 55 * 3422 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...
, 553rd
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
,
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
of
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
in
degrees Celsius The degree Celsius is the unit of temperature on the Celsius temperature scale "Celsius temperature scale, also called centigrade temperature scale, scale based on 0 ° for the melting point of water and 100 ° for the boiling point ...
* 3435 – a
perfect digit-to-digit invariant In number theory, a perfect digit-to-digit invariant (PDDI; also known as a Munchausen number) is a natural number in a given number base b that is equal to the sum of its digits each raised to the power of itself. An example in base 10 is 3435, b ...
, equal to the sum of its digits to their own powers (33 + 44 + 33 + 55 = 3435) * 3439 –
magic constant The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order ''n'' – that is ...
of ''n''×''n'' normal
magic square In mathematics, especially History of mathematics, historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diago ...
and ''n''-queens problem for ''n'' = 19. * 3445 –
centered square number In elementary number theory, a centered square number is a Centered polygonal number, centered figurate number that gives the number of dots in a Square (geometry), square with a dot in the center and all other dots surrounding the center dot i ...
* 3447 – sum of first 42 primes * 3449 – 90th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
* 3456 –
3-smooth In number theory, an ''n''-smooth (or ''n''-friable) number is an integer whose prime factors are all less than or equal to ''n''. For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 72 and 15750 = 2 ...
number (27×33) * 3457 – Proth prime * 3463 –
happy number In number theory, a happy number is a number which eventually reaches 1 when the number is replaced by the sum of the square of each digit. For instance, 13 is a happy number because 1^2+3^2=10, and 1^2+0^2=1. On the other hand, 4 is not a happy ...
* 3467 – safe prime * 3469 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
, Cuban prime of the form ''x'' = ''y'' + 2, completes the tenth
prime quadruplet In number theory, a prime quadruplet (sometimes called a prime quadruple) is a set of four prime numbers of the form This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4. P ...
set * 3473 – centered heptagonal number * 3481 = 592, centered octagonal number * 3486 – triangular number * 3491 – 91st
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...


3500 to 3599

* 3504 – nonagonal number * 3510 – decagonal number * 3511 – largest known
Wieferich prime In number theory, a Wieferich prime is a prime number ''p'' such that ''p''2 divides , therefore connecting these primes with Fermat's little theorem, which states that every odd prime ''p'' divides . Wieferich primes were first described by A ...
* 3512 – number of primes \leq 2^. * 3517 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
, sum of nine consecutive primes (367 + 373 + 379 + 383 + 389 + 397 + 401 + 409 + 419) * 3539 – 92nd
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
* 3540 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...
* 3559 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3569 –
highly cototient number In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above 1 and has more solutions to the equation :x - \phi(x) = k than any other integer below k and above 1. Here, \phi is Euler's totient func ...
* 3570 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
* 3571 – 500th prime, Cuban prime of the form ''x'' = ''y'' + 1, 17th
Lucas number The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence ar ...
, 4th
balanced prime In number theory, a balanced prime is a prime number with equal-sized prime gaps above and below it, so that it is equal to the arithmetic mean of the nearest primes above and below. Or to put it algebraically, the nth prime number p_n is a balanced ...
of order 4. * 3591 – member of the Mian–Chowla sequence * 3593 – 93rd
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, super-prime


3600 to 3699

* 3600 = 602, number of
seconds The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of ...
in an
hour An hour (symbol: h; also abbreviated hr) is a unit of time historically reckoned as of a day and defined contemporarily as exactly 3,600 seconds ( SI). There are 60 minutes in an hour, and 24 hours in a day. The hour was initially establis ...
, called ''šār'' or ''šāru'' in the
sexagesimal Sexagesimal, also known as base 60, is a numeral system with 60 (number), sixty as its radix, base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified fo ...
system of
Ancient Mesopotamia The Civilization of Mesopotamia ranges from the earliest human occupation in the Paleolithic period up to Late antiquity. This history is pieced together from evidence retrieved from archaeological excavations and, after the introduction of writ ...
(''cf''. Saros), 1201- gonal number * 3601 –
star number In mathematics, a star number is a centered figurate number, a centered hexagram (six-pointed star), such as the Star of David, or the board Chinese checkers is played on. The ''n''th star number is given by the formula ''Sn'' = 6''n''(''n' ...
* 3610 – 19th
pentagonal pyramidal number A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of s ...
* 3613 –
centered square number In elementary number theory, a centered square number is a Centered polygonal number, centered figurate number that gives the number of dots in a Square (geometry), square with a dot in the center and all other dots surrounding the center dot i ...
* 3617 – sum of eleven consecutive primes (293 + 307 + 311 + 313 + 317 + 331 + 337 + 347 + 349 + 353 + 359) * 3623 – 94th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, safe prime * 3637 – balanced prime,
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3638 – sum of first 43 primes, 599th
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
* 3643 –
happy number In number theory, a happy number is a number which eventually reaches 1 when the number is replaced by the sum of the square of each digit. For instance, 13 is a happy number because 1^2+3^2=10, and 1^2+0^2=1. On the other hand, 4 is not a happy ...
, sum of seven consecutive primes (499 + 503 + 509 + 521 + 523 + 541 + 547) * 3654 –
tetrahedral number A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid (geometry), pyramid with a triangular base and three sides, called a tetrahedron. The th tetrahedral number, , is the sum of the first triangular ...
* 3655 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
, 601st
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
* 3660 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...
* 3684 – 13th
Keith number In recreational mathematics, a Keith number or repfigit number (short for repetitive Fibonacci-like digit) is a natural number n in a given number base b with k digits such that when a sequence is created such that the first k terms are the k d ...
* 3697 – centered heptagonal number


3700 to 3799

* 3721 = 612, centered
octagonal number In mathematics, an octagonal number is a figurate number. The ''n''th octagonal number ''o'n'' is the number of dots in a pattern of dots consisting of the outlines of regular octagons with sides up to ''n'' dots, when the octagons are overlai ...
* 3729 – nonagonal number * 3733 – balanced prime,
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3741 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
, 618th
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
* 3751 – decagonal number * 3761 – 95th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, super-prime * 3779 – 96th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, safe prime * 3780 – largely composite number * 3782 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...
, 623rd
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
* 3785 –
centered square number In elementary number theory, a centered square number is a Centered polygonal number, centered figurate number that gives the number of dots in a Square (geometry), square with a dot in the center and all other dots surrounding the center dot i ...
* 3797 – member of the Mian–Chowla sequence, both a left- and right-
truncatable prime In number theory, a left-truncatable prime is a prime number which, in a given base, contains no 0, and if the leading ("left") digit is successively removed, then all resulting numbers are prime. For example, 9137, since 9137, 137, 37 and 7 are ...


3800 to 3899

* 3803 – 97th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
,
safe prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
, the largest prime factor of 123,456,789 * 3821 – 98th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
* 3828 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
* 3831 – sum of first 44 primes * 3840 = 163 - 162,
double factorial In mathematics, the double factorial of a number , denoted by , is the product of all the positive integers up to that have the same Parity (mathematics), parity (odd or even) as . That is, n!! = \prod_^ (n-2k) = n (n-2) (n-4) \cdots. Restated ...
of 10 * 3844 = 622 * 3851 – 99th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
* 3856 – number of 17-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed * 3863 – 100th
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
* 3865 – greater of third pair of
Smith brothers The Smith Brothers were makers of the first cough drops produced and advertised in the United States, becoming one of the most famous brands in the country in its day. History William Wallace Smith I (1830–1913) and Andrew Smith (1836–189 ...
* 3888 – longest number when expressed in
Roman numeral Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, ea ...
s I, V, X, L, C, D, and M (MMMDCCCLXXXVIII),
3-smooth In number theory, an ''n''-smooth (or ''n''-friable) number is an integer whose prime factors are all less than or equal to ''n''. For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 72 and 15750 = 2 ...
number (24×35) * 3889 – Cuban prime of the form ''x'' = ''y'' + 2 * 3894 –
octahedral number In number theory, an octahedral number is a figurate number that represents the number of spheres in an octahedron formed from close-packed spheres. The th octahedral number O_n can be obtained by the formula:. :O_n=. The first few octahedral ...


3900 to 3999

* 3901 –
star number In mathematics, a star number is a centered figurate number, a centered hexagram (six-pointed star), such as the Star of David, or the board Chinese checkers is played on. The ''n''th star number is given by the formula ''Sn'' = 6''n''(''n' ...
* 3906 –
pronic number A pronic number is a number that is the product of two consecutive integers, that is, a number of the form n(n+1).. The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,. or rectangular number ...
* 3911 – 101st
Sophie Germain prime In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +&nbs ...
,
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3914 – number of 18-bead necklaces (turning over is allowed) where complements are equivalent * 3916 –
triangular number A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
* 3925 – centered cube number * 3926 – 12th
open meandric number In mathematics, a meander or closed meander is a self-avoiding closed curve which crosses a given line a number of times, meaning that it intersects the line while passing from one side to the other. Intuitively, a meander can be viewed as a meand ...
, 654th
sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
* 3928 – centered heptagonal number * 3937 – product of distinct Mersenne primes, repeated sum of divisors is prime, denominator of conversion factor from meter to
US survey foot The foot (standard symbol: ft) is a unit of length in the British imperial and United States customary systems of measurement. The prime symbol, , is commonly used to represent the foot. In both customary and imperial units, one foot compri ...
* 3940 – there are 3940 distinct ways to arrange the 12 flat
pentacube image:tetracube_categories.svg, upAll 8 one-sided tetracubes – if chirality is ignored, the bottom 2 in grey are considered the same, giving 7 free tetracubes in total image:9L cube puzzle solution.svg, A puzzle involving arranging nine L tricube ...
s (or 3-D
pentomino A pentomino (or 5-omino) is a polyomino of order 5; that is, a polygon in the Plane (geometry), plane made of 5 equal-sized squares connected edge to edge. The term is derived from the Greek word for '5' and "domino". When rotation symmetry, rota ...
es) into a 3x4x5 box (not counting rotations and reflections) * 3943 –
super-prime Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. In other words, if prime numbers are matched ...
* 3947 – safe prime * 3960 – largely composite number * 3961 – nonagonal number, centered square number * 3969 = 632, centered octagonal number * 3989 –
highly cototient number In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above 1 and has more solutions to the equation :x - \phi(x) = k than any other integer below k and above 1. Here, \phi is Euler's totient func ...
* 3998 – member of the Mian–Chowla sequence * 3999 – largest number properly expressible using
Roman numeral Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, ea ...
s I, V, X, L, C, D, and M (MMMCMXCIX), ignoring vinculum


Prime numbers

There are 120
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s between 3000 and 4000: :3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989


References

{{Integers, 10 Integers