Word N-gram Language Model
   HOME



picture info

Word N-gram Language Model
A word ''n''-gram language model is a purely statistical model of language. It has been superseded by recurrent neural network–based models, which have been superseded by large language models. It is based on an assumption that the probability of the next word in a sequence depends only on a fixed size window of previous words. If only one previous word is considered, it is called a bigram model; if two words, a trigram model; if ''n'' − 1 words, an ''n''-gram model. Special tokens are introduced to denote the start and end of a sentence \langle s\rangle and \langle /s\rangle. To prevent a zero probability being assigned to unseen words, each word's probability is slightly higher than its frequency count in a corpus. To calculate it, various methods were used, from simple "add-one" smoothing (assign a count of 1 to unseen ''n''-grams, as an uninformative prior) to more sophisticated models, such as Good–Turing discounting or Katz's back-off model, back-off models. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recurrent Neural Network
Recurrent neural networks (RNNs) are a class of artificial neural networks designed for processing sequential data, such as text, speech, and time series, where the order of elements is important. Unlike feedforward neural networks, which process inputs independently, RNNs utilize recurrent connections, where the output of a neuron at one time step is fed back as input to the network at the next time step. This enables RNNs to capture temporal dependencies and patterns within sequences. The fundamental building block of RNNs is the ''recurrent unit'', which maintains a ''hidden state''—a form of memory that is updated at each time step based on the current input and the previous hidden state. This feedback mechanism allows the network to learn from past inputs and incorporate that knowledge into its current processing. RNNs have been successfully applied to tasks such as unsegmented, connected handwriting recognition, speech recognition, natural language processing, and neural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smoothing
In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal. Smoothing may be used in two important ways that can aid in data analysis (1) by being able to extract more information from the data as long as the assumption of smoothing is reasonable and (2) by being able to provide analyses that are both flexible and robust. Many different algorithms are used in smoothing. Compared to curve fitting Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: * curve fitting often involves the use of an explicit functio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Combination
In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ''ax'' + ''by'', where ''a'' and ''b'' are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field (mathematics), field, with some generalizations given at the end of the article. Definition Let ''V'' be a vector space over the field ''K''. As usual, we call elements of ''V'' ''vector space, vectors'' and call elements of ''K'' ''scalar (mathematics), scalars''. If v1,...,v''n'' are vectors and ''a''1,...,''a''''n'' are scalars, then the ''linear combination of those vectors with those scalars as coefficients'' is :a_1 \mathbf v_1 + a_2 \mathbf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kneser–Ney Smoothing
Kneser–Ney smoothing, also known as Kneser-Essen-Ney smoothing, is a method primarily used to calculate the probability distribution of ''n''-grams in a document based on their histories. It is widely considered the most effective method of smoothing due to its use of absolute discounting by subtracting a fixed value from the probability's lower order terms to omit ''n''-grams with lower frequencies. This approach has been considered equally effective for both higher and lower order ''n''-grams. The method was proposed in a 1994 paper by Reinhard Kneser, Ute Essen and . A common example that illustrates the concept behind this method is the frequency of the bigram "San Francisco". If it appears several times in a training corpus, the frequency of the unigram "Francisco" will also be high. Relying on only the unigram frequency to predict the frequencies of ''n''-grams leads to skewed results; however, Kneser–Ney smoothing corrects this by considering the frequency of the unigra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Smoothing
In statistics, additive smoothing, also called Laplace smoothing or Lidstone smoothing, is a technique used to smooth count data, eliminating issues caused by certain values having 0 occurrences. Given a set of observation counts \mathbf = \langle x_1, x_2, \ldots, x_d \rangle from a d-dimensional multinomial distribution with N trials, a "smoothed" version of the counts gives the estimator : \hat\theta_i = \frac \qquad (i = 1, \ldots, d), where the smoothed count \hat x_i = N \hat\theta_i, and the "pseudocount" ''α'' > 0 is a smoothing parameter, with ''α'' = 0 corresponding to no smoothing (this parameter is explained in below). Additive smoothing is a type of shrinkage estimator, as the resulting estimate will be between the empirical probability ( relative frequency) x_i/N and the uniform probability 1/d. Common choices for ''α'' are 0 (no smoothing), (the Jeffreys prior), or 1 (Laplace's rule of succession), but the parameter may also be set empi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Good–Turing Frequency Estimation
Good–Turing frequency estimation is a statistical technique for estimating the probability of encountering an object of a hitherto unseen species, given a set of past observations of objects from different species. In drawing balls from an urn, the 'objects' would be balls and the 'species' would be the distinct colours of the balls (finite but unknown in number). After drawing R_\text red balls, R_\text black balls and R_\text green balls, we would ask what is the probability of drawing a red ball, a black ball, a green ball or one of a previously unseen colour. Historical background Good–Turing frequency estimation was developed by Alan Turing and his assistant I. J. Good as part of their methods used at Bletchley Park for cracking German ciphers for the Enigma machine during World War II. Turing at first modelled the frequencies as a multinomial distribution, but found it inaccurate. Good developed smoothing algorithms to improve the estimator's accuracy. The discovery ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weighted Mean
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general form in several other areas of mathematics. If all the weights are equal, then the weighted mean is the same as the arithmetic mean. While weighted means generally behave in a similar fashion to arithmetic means, they do have a few counterintuitive properties, as captured for instance in Simpson's paradox. Examples Basic example Given two school with 20 students, one with 30 test grades in each class as follows: :Morning class = :Afternoon class = The mean for the morning class is 80 and the mean of the afternoon class is 90. The unweighted mean of the two means is 85. However, this does not account for the difference in number of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Interpolation
In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points. Linear interpolation between two known points If the two known points are given by the coordinates (x_0,y_0) and the linear interpolant is the straight line between these points. For a value x in the interval the value y along the straight line is given from the equation of slopes \frac = \frac, which can be derived geometrically from the figure on the right. It is a special case of polynomial interpolation with Solving this equation for y, which is the unknown value at x, gives \begin y &= y_0 + (x-x_0)\frac \\ &= \frac + \frac\\ &= \frac \\ &= \frac, \end which is the formula for linear interpolation in the interval Outside this interval, the formula is identical to linear extrapolation. This formula can also be understood as a weighted average. The weights are inversely related to the dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Posterior Distribution
The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior probability contains everything there is to know about an uncertain proposition (such as a scientific hypothesis, or parameter values), given prior knowledge and a mathematical model describing the observations available at a particular time. After the arrival of new information, the current posterior probability may serve as the prior in another round of Bayesian updating. In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest posterior density interval ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prior Distribution
A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable. In Bayesian statistics, Bayes' rule prescribes how to update the prior with new information to obtain the posterior probability distribution, which is the conditional distribution of the uncertain quantity given new data. Historically, the choice of priors was often constrained to a conjugate family of a given likelihood function, so that it would result in a tractable posterior of the same family. The widespread availability of Markov chain Monte Carlo methods, however, has made this less of a concern. There are many ways to constru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]