Three-body Force
   HOME
*





Three-body Force
A three-body force is a force that does not exist in a system of two objects but appears in a three-body system. In general, if the behaviour of a system of more than two objects cannot be described by the two-body interactions between all possible pairs, as a first approximation, the deviation is mainly due to a three-body force. The fundamental strong interaction does exhibit such behaviour, the most important example being the stability experimentally observed for the helium-3 isotope, which can be described as a 3-body quantum cluster entity of two protons and one neutron NPin stable superposition. Direct evidence of a 3-body force in helium-3 is known The existence of stable NPcluster calls into question models of the atomic nucleus that restrict nucleon interactions within shells to 2-body phenomenon. The three-nucleon-interaction is fundamentally possible because gluons, the mediators of the strong interaction, can couple to themselves. In particle physics, the interac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faddeev Equation
The Faddeev equations, named after their inventor Ludvig Faddeev, are equations that describe, at once, all the possible exchanges/interactions in a system of three particles in a fully quantum mechanical formulation. They can be solved iteratively. In general, Faddeev equations need as input a potential that describes the interaction between two individual particles. It is also possible to introduce a term in the equation in order to take also three-body forces into account. The Faddeev equations are the most often used non-perturbative formulations of the quantum-mechanical three-body problem. Unlike the three body problem in classical mechanics, the quantum three body problem is uniformly soluble. In nuclear physics, the off the energy shell nucleon-nucleon interaction has been studied by analyzing (n,2n) and (p,2p) reactions on deuterium targets, using the Faddeev Equations. The nucleon-nucleon interaction is expanded (approximated) as a series of separable potential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review C
Physical may refer to: *Physical examination In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally consists of a series of questions about the patien ..., a regular overall check-up with a doctor * ''Physical'' (Olivia Newton-John album), 1981 ** "Physical" (Olivia Newton-John song) * ''Physical'' (Gabe Gurnsey album) * "Physical" (Alcazar song) (2004) * "Physical" (Enrique Iglesias song) (2014) * "Physical" (Dua Lipa song) (2020) *"Physical (You're So)", a 1980 song by Adam & the Ants, the B side to " Dog Eat Dog" * ''Physical'' (TV series), an American television series See also

{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chiral Perturbation Theory
Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation.Heinrich Leutwyler (2012), Chiral perturbation theory
Scholarpedia, 7(10):8708.
ChPT is a theory which allows one to study the low-energy dynamics of QCD on the basis of this underlying chiral symmetry.


Goals

In the theory of the strong interaction of the standard model, we describe the interactions between quarks and gluons. Due to the running of the strong coupling constant, we can apply perturbation theory in the coupling constant only at high energies. But in the low-energy regime of QCD, the degrees of freedom are no l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Efimov State
The Efimov effect is an effect in the quantum mechanics of few-body systems predicted by the Russian theoretical physicist V. N. Efimov in 1970. Efimov’s effect is where three identical bosons interact, with the prediction of an infinite series of excited three-body energy levels when a two-body state is exactly at the dissociation threshold. One corollary is that there exist bound states (called Efimov states) of three bosons even if the two-particle attraction is too weak to allow two bosons to form a pair. A (three-particle) Efimov state, where the (two-body) sub-systems are unbound, is often depicted symbolically by the Borromean rings. This means that if one of the particles is removed, the remaining two fall apart. In this case, the Efimov state is also called a Borromean state. Theory Efimov predicted that, as the pair interactions among three identical bosons approach resonance—that is, as the binding energy of some two-body bound state approaches zero or the scatteri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borromean Nucleus
A Borromean nucleus is an atomic nucleus comprising three bound components in which any subsystem of two components is unbound. This has the consequence that if one component is removed, the remaining two comprise an unbound resonance, so that the original nucleus is split into three parts. The name is derived from the Borromean rings, a system of three linked rings in which no pair of rings is linked. Examples of Borromean nuclei Many Borromean nuclei are light nuclei near the nuclear drip lines that have a nuclear halo and low nuclear binding energy. For example, the nuclei , , and each possess a two-neutron halo surrounding a core containing the remaining nucleons. These are Borromean nuclei because the removal of either neutron from the halo will result in a resonance unbound to one-neutron emission, whereas the dineutron (the particles in the halo) is itself an unbound system. Similarly, is a Borromean nucleus with a two-proton halo; both the diproton and are unbound. Add ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hydrogen Molecular Ion
The dihydrogen cation or hydrogen molecular ion is a cation (positive ion) with formula . It consists of two hydrogen nuclei (protons) sharing a single electron. It is the simplest molecular ion. The ion can be formed from the ionization of a neutral hydrogen molecule . It is commonly formed in molecular clouds in space, by the action of cosmic rays. The dihydrogen cation is of great historical and theoretical interest because, having only one electron, the equations of quantum mechanics that describe its structure can be solved in a relatively straightforward way. The first such solution was derived by Ø. Burrau in 1927, just one year after the wave theory of quantum mechanics was published. Physical properties Bonding in can be described as a covalent one-electron bond, which has a formal bond order of one half. The ground state energy of the ion is -0.597 Hartree. Isotopologues The dihydrogen cation has six isotopologues, that result from replacement of one or more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-body Problem
In physics, the -body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally.Leimanis and Minorsky: Our interest is with Leimanis, who first discusses some history about the -body problem, especially Ms. Kovalevskaya's 1868–1888 twenty-year complex-variables approach, failure; Section 1: "The Dynamics of Rigid Bodies and Mathematical Exterior Ballistics" (Chapter 1, "The motion of a rigid body about a fixed point (Euler and Poisson equations)"; Chapter 2, "Mathematical Exterior Ballistics"), good precursor background to the -body problem; Section 2: "Celestial Mechanics" (Chapter 1, "The Uniformization of the Three-body Problem (Restricted Three-body Problem)"; Chapter 2, "Capture in the Three-Body Problem"; Chapter 3, "Generalized -body Problem"). Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, unde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Few-body Systems
In mechanics, a few-body system consists of a small number of well-defined structures or point particles. Quantum mechanics In quantum mechanics, examples of few-body systems include light nuclear systems (that is, few-nucleon bound and scattering states), small molecules, light atoms (such as helium in an external electric field), atomic collisions, and quantum dots. A fundamental difficulty in describing few-body systems is that the Schrödinger equation and the classical equations of motion are not analytically solvable for more than two mutually interacting particles even when the underlying forces are precisely known. This is known as the few-body problem. For some three-body systems an exact solution can be obtained iteratively through the Faddeev equations. It can be shown that under certain conditions Faddeev equations should lead to Efimov effect. Some special cases of three-body systems are amenable to analytical solutions (or nearly so) - by special treatments - suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force. The diameter of the nucleus is in the range of () for hydrogen (the diameter of a single proton) to about for uranium. These dimensions are much smaller than the diameter of the atom itself (nucleus + electron cloud), by a factor of about 26,634 (uranium atomic radiu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N). Force is represented by the symbol (formerly ). The original form of Newton's second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time. If the mass of the object is constant, this law implies that the acceleration of an object is directly proportional to the net force acting on the object, is in the direction of the net force, and is inversely proportional to the mass of the object. Concepts related to force include: thrust, which increases the velocity of an object; drag, which decreases the velocity of an object; and torque, which produce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were thought to be elementary particles, not made up of smaller parts. Now they are known to be composite particles, made of three quarks bound together by the strong interaction. The interaction between two or more nucleons is called internucleon interaction or nuclear force, which is also ultimately caused by the strong interaction. (Before the discovery of quarks, the term "strong interaction" referred to just internucleon interactions.) Nucleons sit at the boundary where particle physics and nuclear physics overlap. Particle physics, particularly quantum chromodynamics, provides the fundamental equations that describe the properties of quarks and of the strong interaction. These equations describe quantitatively how quarks can bind toget ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]