Type IIA Supergravity
   HOME





Type IIA Supergravity
In supersymmetry, type IIA supergravity is the unique supergravity in ten dimensions with two supercharges of opposite chirality. It was first constructed in 1984 by a dimensional reduction of eleven-dimensional supergravity on a circle. The other supergravities in ten dimensions are type IIB supergravity, which has two supercharges of the same chirality, and type I supergravity, which has a single supercharge. In 1986 a deformation of the theory was discovered which gives mass to one of the fields and is known as massive type IIA supergravity. Type IIA supergravity plays a very important role in string theory as it is the low-energy limit of type IIA string theory. History After supergravity was discovered in 1976 with pure 4D \mathcal N=1 supergravity, significant effort was devoted to understanding other possible supergravities that can exist with various numbers of supercharges and in various dimensions. The discovery of eleven-dimensional supergravity in 1978 led to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eleven-dimensional Supergravity
In supersymmetry, eleven-dimensional supergravity is the theory of supergravity in the highest number of dimensions allowed for a supersymmetric theory. It contains a graviton, a gravitino, and a 3-form gauge field, with their interactions uniquely fixed by supersymmetry. Discovered in 1978 by Eugène Cremmer, Bernard Julia, and Joël Scherk, it quickly became a popular candidate for a theory of everything during the 1980s. However, interest in it soon faded due to numerous difficulties that arise when trying to construct physically realistic models. It came back to prominence in the mid-1990s when it was found to be the low energy limit of M-theory, making it crucial for understanding various aspects of string theory. History Supergravity was discovered in 1976 through the construction of pure four-dimensional supergravity with one gravitino. One important direction in the supergravity program was to try to construct four-dimensional \mathcal N = 8 supergravity since thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics. A supersymmetric theory is a theory in which the equations for force and the equations for matter are identical. In theoretical physics, theoretical and mathematical physics, any theory with this property has the ''principle of supersymmetry'' (SUSY). Dozens of supersymmetric theories exist. In theory, supersymmetry is a type of Spacetime symmetries, spacetime symmetry betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Henry Schwarz
John Henry Schwarz ( ; born November 22, 1941) is an American theoretical physicist. Along with Yoichiro Nambu, Holger Bech Nielsen, Joël Scherk, Gabriele Veneziano, Michael Green, and Leonard Susskind, he is regarded as one of the founders of string theory. Early life and education He studied mathematics at Harvard College ( A.B., 1962) and theoretical physics at the University of California at Berkeley ( Ph.D., 1966), where his graduate advisor was Geoffrey Chew. For several years he was one of the very few physicists who pursued string theory as a viable theory of quantum gravity. His work with Michael Green on anomaly cancellation in Type I string theories led to the so-called " first superstring revolution" of 1984, which greatly contributed to moving string theory into the mainstream of research in theoretical physics. Schwarz was an assistant professor at Princeton University from 1966 to 1972. He then moved to the California Institute of Technology (Caltech), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ramond–Ramond Field
In theoretical physics, Ramond–Ramond fields are differential form fields in the 10-dimensional spacetime of type II supergravity theories, which are the classical limits of type II string theory. The ranks of the fields depend on which type II theory is considered. As Joseph Polchinski argued in 1995, D-branes are the charged objects that act as sources for these fields, according to the rules of p-form electrodynamics. It has been conjectured that quantum RR fields are not differential forms, but instead are classified by twisted K-theory. The adjective "Ramond–Ramond" reflects the fact that in the RNS formalism, these fields appear in the Ramond–Ramond sector in which all vector fermions are periodic. Both uses of the word "Ramond" refer to Pierre Ramond, who studied such boundary conditions (the so-called Ramond boundary conditions) and the fields that satisfy them in 1971. Defining the fields The fields in each theory As in Maxwell's theory of electromagnetism an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




RNS Formalism
In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism. History The discovery of the Venezian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scalar Field
In mathematics and physics, a scalar field is a function associating a single number to each point in a region of space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical quantity (with units). In a physical context, scalar fields are required to be independent of the choice of reference frame. That is, any two observers using the same units will agree on the value of the scalar field at the same absolute point in space (or spacetime) regardless of their respective points of origin. Examples used in physics include the temperature distribution throughout space, the pressure distribution in a fluid, and spin-zero quantum fields, such as the Higgs field. These fields are the subject of scalar field theory. Definition Mathematically, a scalar field on a region ''U'' is a real or complex-valued function or distribution on ''U''. The region ''U'' may be a set in some Euclidean space, Minkowski spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gravitino
In supergravity theories combining general relativity and supersymmetry, the gravitino () is the gauge fermion supersymmetric partner of the hypothesized graviton. It has been suggested as a candidate for dark matter. If it exists, it is a fermion of spin and therefore obeys the Rarita–Schwinger equation. The gravitino field is conventionally written as ''ψμα'' with a four-vector index and a spinor index. For one would get negative norm modes, as with every massless particle of spin 1 or higher. These modes are unphysical, and for consistency there must be a gauge symmetry which cancels these modes: , where ''εα''(''x'') is a spinor function of spacetime. This gauge symmetry is a local supersymmetry transformation, and the resulting theory is supergravity. Thus the gravitino is the fermion mediating supergravity interactions, just as the photon is mediating electromagnetism, and the graviton is presumably mediating gravitation. Whenever supersymmetry is br ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kalb–Ramond Field
In theoretical physics in general and string theory in particular, the Kalb–Ramond field (named after Michael Kalb and Pierre Ramond), also known as the Kalb–Ramond ''B''-field or Kalb–Ramond NS–NS ''B''-field, is a quantum field that transforms as a two-form, i.e., an antisymmetric tensor field with two indices. The adjective "NS" reflects the fact that in the RNS formalism, these fields appear in the NS–NS sector in which all vector fermions are anti-periodic. Both uses of the word "NS" refer to André Neveu and John Henry Schwarz, who studied such boundary conditions (the so-called Neveu–Schwarz boundary conditions) and the fields that satisfy them in 1971. Details The Kalb–Ramond field generalizes the electromagnetic potential but it has two indices instead of one. This difference is related to the fact that the electromagnetic potential is integrated over one-dimensional worldlines of particles to obtain one of its contributions to the action while the Ka ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-form Electrodynamics
In theoretical physics, -form electrodynamics is a generalization of Maxwell's theory of electromagnetism. Ordinary (via. one-form) Abelian electrodynamics We have a 1-form \mathbf, a gauge symmetry :\mathbf \rightarrow \mathbf + d\alpha , where \alpha is any arbitrary fixed 0-form and d is the exterior derivative, and a gauge-invariant vector current \mathbf with density 1 satisfying the continuity equation :d\mathbf = 0 , where is the Hodge star operator. Alternatively, we may express \mathbf as a closed -form, but we do not consider that case here. \mathbf is a gauge-invariant 2-form defined as the exterior derivative \mathbf = d\mathbf. \mathbf satisfies the equation of motion :d\mathbf = \mathbf (this equation obviously implies the continuity equation). This can be derived from the action :S=\int_M \left frac\mathbf \wedge \mathbf - \mathbf \wedge \mathbf\right, where M is the spacetime manifold. ''p''-form Abelian electrodynamics We have a -form \mathbf, a gaug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graviton
In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string. If it exists, the graviton is expected to be massless because the gravitational force has a very long range and appears to propagate at the speed of light. The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field would couple to the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Tensor (general Relativity)
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical content of the associated equations is entirely different. Gutfreund and Renn say "that in general relativity the gravitational potential is represented by the metric tensor." Notation and conventions This article works with a metric signature that is mostly positive (); see sign convention. The gravitation constant G will be kept explicit. This article employs the Einstein summation convention, where repeated indices are automatically summed over. Definition Mathematically, spacetime is represented by a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supermultiplet
In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra, possibly with extended supersymmetry. Then a superfield is a field on superspace which is valued in such a representation. Naïvely, or when considering flat superspace, a superfield can simply be viewed as a function on superspace. Formally, it is a section of an associated supermultiplet bundle. Phenomenologically, superfields are used to describe particles. It is a feature of supersymmetric field theories that particles form pairs, called superpartners where bosons are paired with fermions. These supersymmetric fields are used to build supersymmetric quantum field theories, where the fields are promoted to operators. History Superfields were introduced by Abdus Salam and J. A. Strathdee in a 1974 article. Operations on superfields and a partial classification were presented a few months later by Sergio Ferrara, Julius Wess and Bruno Zumino. Naming and classification The most co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]