HOME





Trailing Zero
A trailing zero is any 0 digit that comes after the last nonzero digit in a number string in positional notation. For digits ''before'' the decimal point, the trailing zeros between the decimal point and the last nonzero digit are necessary for conveying the magnitude of a number and cannot be omitted (ex. 100), while leading zeros – zeros occurring before the decimal point and before the first nonzero digit – can be omitted without changing the meaning (ex. 001). Any zeros appearing to the right of the last non-zero digit ''after'' the decimal point do not affect its value (ex. 0.100). Thus, decimal notation often does not use trailing zeros that come after the decimal point. However, trailing zeros that come after the decimal point may be used to indicate the number of significant figures, for example in a measurement, and in that context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-''b'' integer ''n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Positional Notation
Positional notation, also known as place-value notation, positional numeral system, or simply place value, usually denotes the extension to any radix, base of the Hindu–Arabic numeral system (or decimal, decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the values may be modified when combined). In modern positional systems, such as the decimal, decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string. The Babylonian Numerals, Babylonian numeral system, base 60, was the first positional sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decimal Representation
A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\cdots b_0.a_1a_2\cdots Here is the decimal separator, is a nonnegative integer, and b_0, \cdots, b_k, a_1, a_2,\cdots are ''digits'', which are symbols representing integers in the range 0, ..., 9. Commonly, b_k\neq 0 if k \geq 1. The sequence of the a_i—the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0. If all a_i are , the separator is also omitted, resulting in a finite sequence of digits, which represents a natural number. The decimal representation represents the infinite sum: r=\sum_^k b_i 10^i + \sum_^\infty \frac. Every nonnegative real number has at least one such representation; it has two such representations (with b_k\neq 0 if k>0) if and only if one has a trailing infinite sequence of , and the other has a trailing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trailing Digit
Significant figures, also referred to as significant digits, are specific digits within a number that is written in positional notation that carry both reliability and necessity in conveying a particular quantity. When presenting the outcome of a measurement (such as length, pressure, volume, or mass), if the number of digits exceeds what the measurement instrument can resolve, only the digits that are determined by the resolution are dependable and therefore considered significant. For instance, if a length measurement yields 114.8 mm, using a ruler with the smallest interval between marks at 1 mm, the first three digits (1, 1, and 4, representing 114 mm) are certain and constitute significant figures. Further, digits that are uncertain yet meaningful are also included in the significant figures. In this example, the last digit (8, contributing 0.8 mm) is likewise considered significant despite its uncertainty. Therefore, this measurement contains f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Empty Sum
In mathematics, an empty sum, or nullary sum, is a summation where the number of terms is zero. The natural way to extend non-empty sums is to let the empty sum be the additive identity. Let a_1, a_2, a_3, ... be a sequence of numbers, and let :s_m = \sum_^m a_i = a_1 + \cdots + a_m be the sum of the first ''m'' terms of the sequence. This satisfies the recurrence :s_m = s_ + a_m provided that we use the following natural convention: s_0=0. In other words, a "sum" s_1 with only one term evaluates to that one term, while a "sum" s_0 with no terms evaluates to 0. Allowing a "sum" with only 1 or 0 terms reduces the number of cases to be considered in many mathematical formulas. Such "sums" are natural starting points in induction proofs, as well as in algorithms. For these reasons, the "empty sum is zero" extension is standard practice in mathematics and computer programming (assuming the domain has a zero element). For the same reason, the empty product is taken to be the multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floor Function
In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, for floor: , , and for ceiling: , and . The floor of is also called the integral part, integer part, greatest integer, or entier of , and was historically denoted (among other notations). However, the same term, ''integer part'', is also used for truncation towards zero, which differs from the floor function for negative numbers. For an integer , . Although and produce graphs that appear exactly alike, they are not the same when the value of is an exact integer. For example, when , . However, if , then , while . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




De Polignac's Formula
In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime ''p'' that divides the factorial ''n''!. It is named after Adrien-Marie Legendre. It is also sometimes known as de Polignac's formula, after Alphonse de Polignac. Statement For any prime number ''p'' and any positive integer ''n'', let \nu_p(n) be the exponent of the largest power of ''p'' that divides ''n'' (that is, the ''p''-adic valuation of ''n''). Then :\nu_p(n!) = \sum_^ \left\lfloor \frac \right\rfloor, where \lfloor x \rfloor is the floor function. While the sum on the right side is an infinite sum, for any particular values of ''n'' and ''p'' it has only finitely many nonzero terms: for every ''i'' large enough that p^i > n, one has \textstyle \left\lfloor \frac \right\rfloor = 0. This reduces the infinite sum above to :\nu_p(n!) = \sum_^ \left\lfloor \frac \right\rfloor \, , where L = \lfloor \log_ n \rfloor. Example For ''n'' = 6, one has 6! = 720 = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-negative
In mathematics, the sign of a real number is its property of being either positive, negative, or 0. Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign. In some contexts, it makes sense to distinguish between a positive and a negative zero. In mathematics and physics, the phrase "change of sign" is associated with exchanging an object for its additive inverse (multiplication with −1, negation), an operation which is not restricted to real numbers. It applies among other objects to vectors, matrices, and complex numbers, which are not prescribed to be only either positive, negative, or zero. The word "sign" is also often used to indicate binary aspects of mathematical or scientific objects, such as odd and even ( sign of a permutation), sense of orientation or rotation ( cw/ccw), one sided limits, and other concepts described in below. Sign of a number Numbers from various number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book ''Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dose (biochemistry)
A dose is a measured quantity of a medicine, nutrient, or pathogen that is delivered as a unit. The greater the quantity delivered, the larger the dose. Doses are most commonly measured for compounds in medicine. The term is usually applied to the quantity of a drug or other agent administered for therapeutic purposes, but may be used to describe any case where a substance is introduced to the body. In nutrition, the term is usually applied to how much of a specific nutrient is in a person's diet or in a particular food, meal, or dietary supplement. For bacterial or Virus, viral agents, dose typically refers to the amount of the pathogen required to infect a host. In clinical pharmacology, ''dose'' refers to the amount of drug administered to a person, and Dosage (pharmacology), ''dosage'' is a fuller description that includes not only the dose (e.g., "500 mg") but also the frequency and duration of the treatment (e.g., "twice a day for one week"). Exposure assessment, '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decimal Point
FIle:Decimal separators.svg, alt=Four types of separating decimals: a) 1,234.56. b) 1.234,56. c) 1'234,56. d) ١٬٢٣٤٫٥٦., Both a comma and a full stop (or period) are generally accepted decimal separators for international use. The apostrophe and Arabic decimal separator are also used in certain contexts. A decimal separator is a symbol that separates the integer part from the fractional part of a number written in decimal form. Different countries officially designate different symbols for use as the separator. The choice of symbol can also affect the choice of symbol for the #Digit grouping, thousands separator used in digit grouping. Any such symbol can be called a decimal mark, decimal marker, or decimal sign. Symbol-specific names are also used; decimal point and decimal comma refer to a dot (either Baseline dot, baseline or Middle dot, middle) and comma respectively, when it is used as a decimal separator; these are the usual terms used in English, with the aforem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]