Torsion-free Cover
In algebra, a torsion-free module is a module over a ring such that zero is the only element annihilated by a regular element (non zero-divisor) of the ring. In other words, a module is ''torsion free'' if its torsion submodule contains only the zero element. In integral domains the regular elements of the ring are its nonzero elements, so in this case a torsion-free module is one such that zero is the only element annihilated by some non-zero element of the ring. Some authors work only over integral domains and use this condition as the definition of a torsion-free module, but this does not work well over more general rings, for if the ring contains zero-divisors then the only module satisfying this condition is the zero module. Examples of torsion-free modules Over a commutative ring ''R'' with total quotient ring ''K'', a module ''M'' is torsion-free if and only if Tor1(''K''/''R'',''M'') vanishes. Therefore flat modules, and in particular free and projective modules, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torsionless Module
In abstract algebra, a module (mathematics), module ''M'' over a ring (mathematics), ring ''R'' is called torsionless if it can be embedded into some direct product ''R''''I''. Equivalently, ''M'' is torsionless if each non-zero element of ''M'' has non-zero image under some ''R''-linear functional ''f'': : f\in M^=\operatorname_R(M,R),\quad f(m)\ne 0. This notion was introduced by Hyman Bass. Properties and examples A module is torsionless if and only if the canonical map into its double dual module, dual, : M\to M^=\operatorname_R(M^,R), \quad m\mapsto (f\mapsto f(m)), m\in M, f\in M^, is injective. If this map is bijective then the module is called reflexive. For this reason, torsionless modules are also known as semi-reflexive. * A unital free module is torsionless. More generally, a direct sum of torsionless modules is torsionless. * A free module is reflexive if it is finitely generated module, finitely generated, and for some rings there are also infinitely genera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasicoherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X- modules that has a local presentation, that is, every point in X has an open neighborhood U in which there is an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flat Cover
In algebra, a flat cover of a module ''M'' over a ring is a surjective homomorphism from a flat module ''F'' to ''M'' that is in some sense minimal. Any module over a ring has a flat cover that is unique up to (non-unique) isomorphism. Flat covers are in some sense dual to injective hulls, and are related to projective covers and torsion-free cover In algebra, a torsion-free module is a module over a ring such that zero is the only element annihilated by a regular element (non zero-divisor) of the ring. In other words, a module is ''torsion free'' if its torsion submodule contains only t ...s. Definitions The homomorphism ''F''→''M'' is defined to be a flat cover of ''M'' if it is surjective, ''F'' is flat, every homomorphism from flat module to ''M'' factors through ''F'', and any map from ''F'' to ''F'' commuting with the map to ''M'' is an automorphism of ''F''. History While projective covers for modules do not always exist, it was speculated that for general rings, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In an algebraic structure such as a group, a ring, or vector space, an ''automorphism'' is simply a bijective homomorphism of an object into itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) More generally, for an object in some category, an automorphism is a morphism of the object to itself that has an inverse morphism; that is, a morphism f: X\to X is an automorphism if there is a morphism g: X\to X such that g\circ f= f\circ g = \operatorname _X, where \operatorname _X is the identity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Endomorphism
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a group is a group homomorphism . In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set ''S'' to itself. In any category, the composition of any two endomorphisms of is again an endomorphism of . It follows that the set of all endomorphisms of forms a monoid, the full transformation monoid, and denoted (or to emphasize the category ). Automorphisms An invertible endomorphism of is called an automorphism. The set of all automorphisms is a subset of with a group structure, called the automorphism group of and denoted . In the following diagram, the arrows denote implication: Endomorphism rings Any two endomorphisms of an abelian group, , can be ad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Principal Ideal Domain
In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some authors such as Bourbaki refer to PIDs as principal rings. Principal ideal domains are mathematical objects that behave like the integers, with respect to divisibility: any element of a PID has a unique factorization into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If and are elements of a PID without common divisors, then every element of the PID can be written in the form , etc. Principal ideal domains are Noetherian, they are integrally closed, they are unique factorization domains and Dedekind domains. All Euclidean domains and all fields are principal ideal domain ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dedekind Domain
In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quotient Module
In algebra, given a module and a submodule, one can construct their quotient module. This construction, described below, is very similar to that of a quotient vector space. It differs from analogous quotient constructions of rings and groups by the fact that in the latter cases, the subspace that is used for defining the quotient is not of the same nature as the ambient space (that is, a quotient ring is the quotient of a ring by an ideal, not a subring, and a quotient group is the quotient of a group by a normal subgroup, not by a general subgroup). Given a module over a ring , and a submodule of , the quotient space is defined by the equivalence relation : a \sim b if and only if b - a \in B, for any in . The elements of are the equivalence classes = a+B = \. The function \pi: A \to A/B sending in to its equivalence class is called the '' quotient map'' or the ''projection map'', and is a module homomorphism. The addition operation on is defined for two equ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integrally Closed Domain
In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' that is a root of a monic polynomial with coefficients in ''A,'' then ''x'' is itself an element of ''A.'' Many well-studied domains are integrally closed, as shown by the following chain of class inclusions: An explicit example is the ring of integers Z, a Euclidean domain. All regular local rings are integrally closed as well. A ring whose localizations at all prime ideals are integrally closed domains is a normal ring. Basic properties Let ''A'' be an integrally closed domain with field of fractions ''K'' and let ''L'' be a field extension of ''K''. Then ''x''∈''L'' is integral over ''A'' if and only if it is algebraic over ''K'' and its minimal polynomial over ''K'' has coefficients in ''A''. In particular, this means that any elemen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |