Topological Game
In mathematics, a topological game is an infinite game of perfect information played between two players on a topological space. Players choose objects with topological properties such as points, open sets, closed sets and open coverings. Time is generally discrete, but the plays may have Transfinite number, transfinite lengths, and extensions to continuum time have been put forth. The conditions for a player to win can involve notions like topological closure and wikt:convergence, convergence. It turns out that some fundamental topological constructions have a natural counterpart in topological games; examples of these are the Baire property, Baire spaces, completeness and convergence properties, separation properties, covering and base properties, continuous images, Suslin sets, and singular spaces. At the same time, some topological properties that arise naturally in topological games can be generalized beyond a game-theoretic context: by virtue of this duality, topological games ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Banach–Mazur Game
In general topology, set theory and game theory, a Banach– Mazur game is a topological game played by two players, trying to pin down elements in a set (space). The concept of a Banach–Mazur game is closely related to the concept of Baire spaces. This game was the first infinite positional game of perfect information to be studied. It was introduced by Stanisław Mazur as problem 43 in the Scottish book, and Mazur's questions about it were answered by Banach. Definition Let Y be a non-empty topological space, X a fixed subset of Y and \mathcal a family of subsets of Y that have the following properties: * Each member of \mathcal has non-empty interior. * Each non-empty open subset of Y contains a member of \mathcal. Players, P_1 and P_2 alternately choose elements from \mathcal to form a sequence W_0 \supseteq W_1 \supseteq \cdots. P_1 wins if and only if :X \cap \left (\bigcap_ W_n \right ) \neq \emptyset. Otherwise, P_2 wins. This is called a general Banach–Mazur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets (S_i as a nonempty set indexed with i), there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. The axiom of choice is equivalent to the statement that every partition has a transversal. In many cases, a set created by choosing elements can be made without invoking the axiom of choice, particularly if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available — some distinguishing property that happens to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
First Infinite Ordinal
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positional Game
A positional game in game theory is a kind of a combinatorial game for two players. It is described by: *Xa finite set of elements. Often ''X'' is called the ''board'' and its elements are called ''positions''. *\mathcala family of subsets of X. These subsets are usually called the ''winning sets''. * A criterion for winning the game. During the game, players alternately claim previously-unclaimed positions, until one of the players wins. If all positions in X are taken while no player wins, the game is considered a draw. The classic example of a positional game is tic-tac-toe. In it, X contains the 9 squares of the game-board, \mathcal contains the 8 lines that determine a victory (3 horizontal, 3 vertical and 2 diagonal), and the winning criterion is: the first player who holds an entire winning-set wins. Other examples of positional games are Hex and the Shannon switching game. For every positional game there are exactly three options: either the first player has a winn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Gale
David Gale (December 13, 1921 – March 7, 2008) was an American mathematician and economist. He was a professor emeritus at the University of California, Berkeley, affiliated with the departments of mathematics, economics, and industrial engineering and operations research. He has contributed to the fields of mathematical economics, game theory, and convex analysis. Personal life Gale graduated with a Bachelor of Arts from Swarthmore College, obtained a M.A. from the University of Michigan in 1947, and earned his Ph.D. in Mathematics at Princeton University in 1949. He taught at Brown University from 1950 to 1965 and then joined the faculty at the University of California, Berkeley. Gale lived in Berkeley, California, and Paris, France with his partner Sandra Gilbert, feminist literary scholar and poet. He has three daughters and two grandsons. Contributions Gale's contributions to mathematical economics include an early proof of the existence of competitive equ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bridg-It
The Shannon switching game is a connection game for two players, invented by American mathematician and electrical engineer Claude Shannon, the "father of information theory", some time before 1951. Two players take turns coloring the edges of an arbitrary graph. One player has the goal of connecting two distinguished vertices by a path of edges of their color. The other player aims to prevent this by using their color instead (or, equivalently, by erasing edges). The game is commonly played on a rectangular grid; this special case of the game was independently invented by American mathematician David Gale in the late 1950s and is known as Gale or Bridg-It. Rules The game is played on a finite graph with two special nodes, ''A'' and ''B''. Each edge of the graph can be either colored or removed. The two players are called ''Short'' and ''Cut'', and alternate moves. On Cut's turn, Cut deletes from the graph a non-colored edge of their choice. On Short's turn, Short colors any ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lloyd Shapley
Lloyd Stowell Shapley (; June 2, 1923 – March 12, 2016) was an American mathematician and Nobel Memorial Prize-winning economist. He contributed to the fields of mathematical economics and especially game theory. Shapley is generally considered one of the most important contributors to the development of game theory since the work of von Neumann and Morgenstern. With Alvin E. Roth, Shapley won the 2012 Nobel Memorial Prize in Economic Sciences "for the theory of stable allocations and the practice of market design." Life and career Lloyd Shapley was born on June 2, 1923, in Cambridge, Massachusetts, one of the sons of astronomers Harlow Shapley and Martha Betz Shapley, both from Missouri. He attended Phillips Exeter Academy and was a student at Harvard when he was drafted in 1943. He served in the United States Army Air Corps in Chengdu, China and received the Bronze Star decoration for breaking the Soviet weather code. After the war, Shapley returned to Harvard and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook University and the only mathematician to have won the Fields Medal, the Wolf Prize, the Abel Prize and all three Steele prizes. Early life and career Milnor was born on February 20, 1931, in Orange, New Jersey. His father was J. Willard Milnor, an engineer, and his mother was Emily Cox Milnor. As an undergraduate at Princeton University he was named a Putnam Fellow in 1949 and 1950 and also proved the Fáry–Milnor theorem when he was only 19 years old. Milnor graduated with an A.B. in mathematics in 1951 after completing a senior thesis, titled "Link groups", under the supervision of Ralph Fox. He remained at Princeton to pursue graduate studies and received his Ph.D. in mathematics in 1954 after completing a doctoral dissertation, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hex (board Game)
Hex (also called Nash) is a two player abstract strategy board game in which players attempt to connect opposite sides of a rhombus-shaped board made of hexagonal cells. Hex was invented by mathematician and poet Piet Hein in 1942 and later rediscovered and popularized by John Nash. It is traditionally played on an 11×11 rhombus board, although 13×13 and 19×19 boards are also popular. The board is composed of hexagons called ''cells'' or ''hexes''. Each player is assigned a pair of opposite sides of the board, which they must try to connect by alternately placing a stone of their color onto any empty hex. Once placed, the stones are never moved or removed. A player wins when they successfully connect their sides together through a chain of adjacent stones. Draws are impossible in Hex due to the topology of the game board. Despite the simplicity of its rules, the game has deep strategy and sharp tactics. It also has profound mathematical underpinnings related to the Brouwe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Nash (mathematician)
John Forbes Nash Jr. (June 13, 1928 – May 23, 2015), known and published as John Nash, was an American mathematician who made fundamental contributions to game theory, real algebraic geometry, differential geometry, and partial differential equations. Nash and fellow game theorists John Harsanyi and Reinhard Selten were awarded the 1994 Nobel Prize in Economics. In 2015, Louis Nirenberg and he were awarded the Abel Prize for their contributions to the field of partial differential equations. As a graduate student in the Princeton University Department of Mathematics, Nash introduced a number of concepts (including Nash equilibrium and the Nash bargaining solution), which are now considered central to game theory and its applications in various sciences. In the 1950s, Nash discovered and proved the Nash embedding theorems by solving a system of nonlinear partial differential equations arising in Riemannian geometry. This work, also introducing a preliminary form of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |