Tetration
In mathematics, tetration (or hyper-4) is an operation (mathematics), operation based on iterated, or repeated, exponentiation. There is no standard mathematical notation, notation for tetration, though Knuth's up arrow notation \uparrow \uparrow and the left-exponent ^b are common. Under the definition as repeated exponentiation, means , where ' copies of ' are iterated via exponentiation, right-to-left, i.e. the application of exponentiation n-1 times. ' is called the "height" of the function, while ' is called the "base," analogous to exponentiation. It would be read as "the th tetration of ". For example, 2 tetrated to 4 (or the fourth tetration of 2) is =2^=2^=2^=65536. It is the next hyperoperation after exponentiation, but before pentation. The word was coined by Reuben Louis Goodstein from tetra- (four) and iterated function, iteration. Tetration is also defined recursively as : := \begin 1 &\textn=0, \\ a^ &\textn>0, \end allowing for the holomorphic function, hol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pentation
In mathematics, pentation (or hyper-5) is the fifth hyperoperation. Pentation is defined to be repeated tetration, similarly to how tetration is repeated exponentiation, exponentiation is repeated multiplication, and multiplication is repeated addition. The concept of "pentation" was named by English mathematician Reuben Goodstein in 1947, when he came up with the naming scheme for hyperoperations. The number ''a'' pentated to the number ''b'' is defined as ''a'' tetrated to itself ''b - 1'' times. This may variously be denoted as a[5]b, a\uparrow\uparrow\uparrow b, a\uparrow^3 b, a\to b\to 3, or , depending on one's choice of notation. For example, 2 pentated to 2 is 2 tetrated to 2, or 2 raised to the power of 2, which is 2^2 = 4. As another example, 2 pentated to 3 is 2 tetrated to the result of 2 tetrated to 2. Since 2 tetrated to 2 is 4, 2 pentated to 3 is 2 tetrated to 4, which is 2^ = 65536. Based on this definition, pentation is only defined when ''a'' and ''b'' are both ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iterated Function
In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated. For example, on the image on the right: : Iterated functions are studied in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of , where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_X and f^ ~ \stackrel ~ f \circ f^, where is the identity function on and denotes function composition. This notation has been traced to and John Frederick William Herschel in 1813. Herschel credited ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Large Numbers
Large numbers, far beyond those encountered in everyday life—such as simple counting or financial transactions—play a crucial role in various domains. These expansive quantities appear prominently in mathematics, cosmology, cryptography, and statistical mechanics. While they often manifest as large positive integers, they can also take other forms in different contexts (such as P-adic number). Googology delves into the naming conventions and properties of these immense numerical entities. Since the customary, traditional (non-technical) decimal format of large numbers can be lengthy, other systems have been devised that allows for shorter representation. For example, a billion is represented as 13 characters (1,000,000,000) in decimal format, but is only 3 characters (109) when expressed in exponential format. A trillion is 17 characters in decimal, but only 4 (1012) in exponential. Values that vary dramatically can be represented and compared graphically via logarithmic sca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperoperation
In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called ''hyperoperations'' in this context) that starts with a unary operation (the successor function with ''n'' = 0). The sequence continues with the binary operations of addition (''n'' = 1), multiplication (''n'' = 2), and exponentiation (''n'' = 3). After that, the sequence proceeds with further binary operations extending beyond exponentiation, using right-associativity. For the operations beyond exponentiation, the ''n''th member of this sequence is named by Reuben Goodstein after the Greek prefix of ''n'' suffixed with ''-ation'' (such as tetration (''n'' = 4), pentation (''n'' = 5), hexation (''n'' = 6), etc.) and can be written as using ''n'' − 2 arrows in Knuth's up-arrow notation. Each hyperoperation may be understood recursively in terms of the previous one by: :a = \underbrace_,\quad n \ge 2 It may also be defined according to the recursion rule part of the defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Knuth's Up Arrow Notation
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. In his 1947 paper, R. L. Goodstein introduced the specific sequence of operations that are now called ''hyperoperations''. Goodstein also suggested the Greek names tetration, pentation, etc., for the extended operations beyond exponentiation. The sequence starts with a unary operation (the successor function with ''n'' = 0), and continues with the binary operations of addition (''n'' = 1), multiplication (''n'' = 2), exponentiation (''n'' = 3), tetration (''n'' = 4), pentation (''n'' = 5), etc. Various notations have been used to represent hyperoperations. One such notation is H_n(a,b). Knuth's up-arrow notation \uparrow is another. For example: * the single arrow \uparrow represents exponentiation (iterated multiplication) 2 \uparrow 4 = H_3(2,4) = 2\times(2\times(2\times 2)) = 2^4 = 16 * the double arrow \uparrow\uparrow represents tetration (iterated ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponentiation
In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product (mathematics), product of multiplying bases: b^n = \underbrace_.In particular, b^1=b. The exponent is usually shown as a superscript to the right of the base as or in computer code as b^n. This binary operation is often read as " to the power "; it may also be referred to as " raised to the th power", "the th power of ", or, most briefly, " to the ". The above definition of b^n immediately implies several properties, in particular the multiplication rule:There are three common notations for multiplication: x\times y is most commonly used for explicit numbers and at a very elementary level; xy is most common when variable (mathematics), variables are used; x\cdot y is used for emphasizing that one ta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Function
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or ''x''1/''n''). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. An algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s. Many textbooks and dictionaries do not give a precise definition of the elementary functions, and mathematicians differ on it. Examples Basic examples Elementary functions of a single variable include: * Constant functions: 2,\ \pi,\ e, etc. * Rational powers of : x,\ x^2,\ \sqrt\ (x^\frac),\ x^\frac, etc. * Exponential functions: e^x, \ a^x * Logarithm In mathematics, the logarithm o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unary Operation
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation on . Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial ), functional notation (e.g. or ), and superscripts (e.g. transpose ). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the argument. Examples Absolute value Obtaining the absolute value of a number is a unary operation. This function is defined as , n, = \begin n, & \mbox n\geq0 \\ -n, & \mbox n<0 \end where is the absolute value of . Negation [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Successor Function
In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by ''S'', so ''S''(''n'') = ''n'' +1. For example, ''S''(1) = 2 and ''S''(2) = 3. The successor function is one of the basic components used to build a primitive recursive function. Successor operations are also known as zeration in the context of a zeroth hyperoperation: H0(''a'', ''b'') = 1 + ''b''. In this context, the extension of zeration is addition, which is defined as repeated succession. Overview The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers. In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. For example, 1 is defined to be ''S''(0), and addition on natural numbers is defined recursively by: : This can be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |