Tau Antineutrino
   HOME





Tau Antineutrino
The tau neutrino or tauon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the tau (), it forms the third generation of leptons, hence the name tau neutrino. Its existence was immediately implied after the tau particle was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLAC– LBL group. The discovery of the tau neutrino was announced in July 2000 by the DONUT collaboration (Direct Observation of the Nu Tau). In 2024, the IceCube Neutrino Observatory published findings of seven astrophysical tau neutrino candidates. As of 2022 they have been called the "least studied particle in the standard model" because of their low cross section, difficulty of production, and difficulty to distinguish from other neutrino flavors. One review argues they are worth studying more in order to finally completely measure their properties, test our knowledge of neutrino mixing, probe possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles. Ordinary matter is composed of atoms, themselves once thought to be indivisible elementary particles. The name ''atom'' comes from the Ancient Greek word ''ἄτομος'' ( atomos) which means ''indivisible'' or ''uncuttable''. Despite the theories about atoms that had existed for thousands of years, the factual existence of ato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SLAC
SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored by the United States Department of Energy and administrated by Stanford University. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 that could accelerate electrons to energies of 50 GeV. Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, accelerator physics, astroparticle physics, and cosmology. The laboratory is under the programmatic direction of the United States Department of Energy Office of Science. History Founded in 1962 as the Stanford Linear Accelera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leptons
In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron. There are six types of leptons, known as '' flavours'', grouped in three '' generations''. The first-generation leptons, also called ''electronic leptons'', comprise the electron () and the electron neutrino (); the second are the ''muonic leptons'', comprising the muon () and the muon neutrino (); and the third are the ''tauonic leptons'', comprising the tau () and the tau neutrino (). Electrons have the least m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrinos
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles (excluding massless particles). The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Consequently, neutrinos typically pass through normal matter unimpeded and with no detectable effect. Weak interactions create neutrinos in one of three leptonic flavors: # electron neutrino, # muon neutrino, # tau neutrino, Each flavor is associated with the correspondingly named charged lepton. Although neutrinos were long believed to be massles ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Muon Neutrino
The muon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics. Discovery The muon neutrino or "neutretto" was hypothesized by several physicists in the 1940s. The first paper on it may be Shoichi Sakata and Takesi Inoue's two-meson theory of 1942, which also involved two neutrinos. In 1962 Leon M. Lederman, Melvin Schwartz and Jack Steinberger proved the existence of the muon neutrino in an experiment at the Brookhaven National Laboratory. This earned them the 1988 Nobel Prize. Apparent speed anomaly In September 2011 OPERA researchers reported that muon neutrinos were apparently traveling at faster than the speed of light. This result was confirmed in a second experiment in November 2011. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electron Neutrino
The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name ''electron neutrino''. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment). Proposal In the early 1900s, theories predicted that the electrons resulting from beta decay should have been emitted at a specific energy. However, in 1914, James Chadwick showed that electrons were instead emitted in a continuous spectrum. : → + : The early understanding of beta decay In 1930, Wolfgang Pauli theorized that an undetected particle was carrying away the observed difference between the energy, momentum, and angular momentum of the initial and final particles.Niels Bohr was notably opposed to this interpreta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tau (particle)
The tau (), also called the tau lepton, tau particle or tauon, is an elementary particle similar to the electron, with negative electric charge and a spin-1/2, spin of . Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau" (also called the ''positive tau''). Tau particles are denoted by the symbol and the antitaus by . Tau leptons have a lifetime of and a mass of /''c''2 (compared to /''c''2 for muons and /''c''2 for electrons). Since their interactions are very similar to those of the electron, a tau can be thought of as a ''much'' heavier version of the electron. Because of their greater mass, tau particles do not emit as much bremsstrahlung, bremsstrahlung (braking radiation) as electrons; consequently they are potentially much more highly penetrating than electrons. Bec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson that Coupling (physics), couples to (interacts with) particles whose mass arises from their interactions with the Higgs Field, has zero Spin (physics), spin, even (positive) Parity (physics), parity, no electric charge, and no color charge, colour charge. It is also very unstable, particle decay, decaying into other particles almost immediately upon generation. The Higgs field is a scalar field with two neutral and two electrically charged components that form a complex doublet (physics), doublet of the weak isospin SU(2) symmetry. Its "Spontaneous symmetry breaking#Sombrero potential, sombrero potential" leads it to take a nonzero value everywhere (inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated some success in providing experimental predictions, it leaves some physics be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IceCube Neutrino Observatory
The IceCube Neutrino Observatory (or simply IceCube) is a neutrino observatory developed by the University of Wisconsin–Madison and constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometer. Similar to its predecessor, the Antarctic Muon And Neutrino Detector Array (AMANDA), IceCube consists of spherical optical sensors called Digital Optical Modules (DOMs), each with a photomultiplier tube (PMT) and a single-board data acquisition computer which sends digital data to the counting house on the surface above the array. IceCube was completed on 18 December 2010. DOMs are deployed on strings of 60 modules each at depths between 1,450 and 2,450 meters into holes melted in the ice using a hot water drill. IceCube is designed to look for point sources of neutrinos in the electronvolt, teraelectronvolt (TeV) range to explore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics Letters B
Physics is the scientific study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of the human intellect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]