HOME





Taenite
Taenite is a mineral found naturally on Earth mostly in iron meteorites. It is an alloy of iron and nickel, with a chemical formula of and nickel proportions of 20% up to 65%. The name is derived from the Greek ταινία for "band, ribbon". Taenite is a major constituent of iron meteorites. In octahedrites it is found in bands interleaving with kamacite forming Widmanstätten patterns, whereas in ataxites it is the dominant constituent. In octahedrites a fine intermixture with kamacite can occur, which is called plessite. Taenite is one of four known Fe-Ni meteorite minerals: The others are kamacite, tetrataenite, and antitaenite. Properties It is opaque with a metallic grayish to white color. The structure is isometric-hexoctahedral ( cubic). Its density is around 8 g/cm3 and hardness is 5 to 5.5 on the Mohs scale. Taenite is magnetic, in contrast to antitaenite. The structure is isometric-hexoctahedral ( cubic). The crystal lattice has the c≈a=. The Strunz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tetrataenite
Tetrataenite is a native metal alloy composed of chemically-ordered L10-type , recognized as a mineral in 1980. The mineral is named after its tetragonal crystal structure and its relation to the iron-nickel alloy, taenite, which is chemically disordered (A1) phase with an underlying fcc lattice. Tetrataenite is one of the mineral phases found in meteoric iron. Before its discovery in meteoritic samples, experimental synthesis of the L10 phase was first reported in 1962 by Louis Néel and co-workers, following neutron irradiation of a chemically disordered FeNi sample under an applied magnetic field. Compared to the magnetically soft, chemically disordered A1 phase (taenite), the tetragonal L10 structure of tetrataenite leads to good hard magnetic properties, including a large uniaxial magnetocrystalline anisotropy energy. Consequently, it is under consideration for applications as a rare-earth-free permanent magnet. Formation Tetrataenite forms naturally in iron meteorites that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kamacite
Kamacite is an alloy of iron and nickel, which is found on Earth only in meteorites. According to the International Mineralogical Association (IMA) it is considered a proper nickel-rich variety of the mineral native iron. The proportion iron:nickel is between 90%:10% and 95%:5%; small quantities of other elements, such as cobalt or carbon may also be present. The mineral has a metallic luster, is gray and has no clear cleavage although its crystal structure is isometric-hexoctahedral. Its density is about 8 g/cm3 and its hardness is 4 on the Mohs scale. It is also sometimes called balkeneisen. The name was coined in 1861 and is derived from the Greek root ''καμακ-'' "kamak" or ''κάμαξ'' "kamaks", meaning vine-pole. It is a major constituent of iron meteorites (octahedrite and hexahedrite types). In the octahedrites it is found in bands interleaving with taenite forming Widmanstätten patterns. In hexahedrites, fine parallel lines called Neumann lines are ofte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antitaenite
Antitaenite is a meteoritic metal alloy mineral composed of iron (Fe) and 20–40% nickel (Ni), (and traces of other elements) that has a face centered cubic crystal structure. There are three other known Fe-Ni meteoritic minerals: kamacite, taenite, and tetrataenite. The existence of antitaenite as a new mineral species, occurring in both iron meteorites and in chondrites, was first proposed in 1995 but the IMA has not approved paramagnetic antitaenite; instead the organization regards it as a variety of taenite. Gamma (fcc) Fe-Ni alloys with low-Ni (about 25% Ni) are probably inhomogeneous on a nanometer scale. Antitaenite and taenite have the same crystal structure (face centered cubic) and can have the same chemical composition (same proportions of Fe and Ni) but they differ in their electronic structures: taenite has a high magnetic moment whereas antitaenite has a low magnetic moment. This difference in electronic structure was first established in 1999 and arises from a hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slow to react with air under standard conditions because a passivation layer of nickel oxide forms on the surface that prevents further corrosion. Even so, pure native nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks, and in the interiors of larger nickel–iron meteorites that were not exposed to oxygen when outside Earth's atmosphere. Meteoric nickel is found in combination with iron, a reflection of the origin of those elements as major end products of supernova nucleosynthesis. An iron–nickel mixture is thought to compose Earth's outer and inner cores. Use of nickel (as natural meteoric nickel–iron alloy) has been traced as far back as 3500 BCE. Nickel was first isolated and classifie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ataxite
Ataxites (from Greek meaning "without structure") are a structural class of iron meteorites with a high nickel content and show no Widmanstätten patterns upon etching. Characteristics Ataxites are composed mainly of meteoric iron, a native metal found in meteorites that consists of the mineral taenite with minor amounts of plessite, troilite, and microscopic lamellae of kamacite. Ataxites are the most nickel-rich meteorites known; they usually contain over 18% nickel. The high nickel content is the reason that they do not develop a Widmanstätten structure, because in this case kamacite can be exsolved from taenite only at such a low temperature (below about 600°C) where diffusion is already too slow.F. Heide, F. Wlotzka, Meteorites, Messengers from Space, Springer-Verlag 1995, page 143


Classification

Most ataxites belong to the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Minerals
This is a list of minerals which have Wikipedia articles. Minerals are distinguished by various chemical and physical properties. Differences in chemical composition and crystal structure distinguish the various ''species''. Within a mineral species there may be variation in physical properties or minor amounts of impurities that are recognized by mineralogists or wider society as a mineral ''variety''. Mineral variety names are listed after the valid minerals for each letter. For a more complete listing of all mineral names, see List of minerals recognized by the International Mineralogical Association. A :Varieties that are not valid species: *Adamantine spar (variety of corundum) *Agate (variety of chalcedony and quartz) *Alabaster (variety of gypsum) *Alexandrite (variety of chrysoberyl) *Allingite (synonym of amber) *Alum *Amazonite (variety of microcline) *Amethyst (purple variety of quartz) *Ametrine (variety of quartz) *Ammolite (organic; also a gemstone) *Amos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glossary Of Meteoritics
This is a glossary of terms used in meteoritics, the science of meteorites. # * 2 Pallas – an asteroid from the asteroid belt and one of the likely parent bodies of the CR meteorites. * 4 Vesta – second-largest asteroid in the asteroid belt and likely source of the HED meteorites. * 221 Eos – an asteroid from the asteroid belt and one of the likely parent bodies of the CO meteorites. * 289 Nenetta – an asteroid from the asteroid belt and one of the likely parent bodies of the angrites. * 3103 Eger – an asteroid from the asteroid belt and one of the likely parent bodies of the aubrites. * 3819 Robinson – an asteroid from the asteroid belt and one of the likely parent bodies of the angrites. * IAB meteorite, IA meteorite – an iron meteorite group now part of the IAB group/complex. * IAB meteorite – an iron meteorite and primitive achondrite of the IAB group/complex. * IAB meteorite, IB meteorite – an iron meteorite group now part of the IAB group/complex. * IC me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octahedrite
Octahedrites are the most common Iron meteorite#Structural classification, structural class of iron meteorites. The structures occur because the meteoric iron has a certain nickel concentration that leads to the exsolution of kamacite out of taenite while cooling. Structure Octahedrites derive their name from the crystal structure paralleling an octahedron. Opposite faces are parallel so, although an octahedron has 8 faces, there are only 4 sets of kamacite plates. Due to a long cooling time in the interior of the parent asteroids, these alloys have crystallized into intermixed millimeter-sized bands (from about 0.2 mm to 5 cm). When polished and acid etched the classic Widmanstätten patterns of intersecting lines of lamellar kamacite, are visible. In gaps between the kamacite and taenite lamellae, a fine-grained mixture called plessite is often found. An iron nickel phosphide, schreibersite, is present in most nickel-iron meteorites, as well as an iron-nickel-coba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Plessite
Plessite is a meteorite texture consisting of a fine-grained mixture of the minerals kamacite and taenite found in the octahedrite iron meteorites. It occurs in gaps (its name is derived from the Greek "plythos" meaning "filling"according tMindat a mineral database and mineralogical reference website) between the larger bands of kamacite and taenite which form Widmanstätten patterns. Many types of plessite exist and vary in formation mechanism and morphology. Some types of plessite as named by Buchwald's "Iron Meteorites" and Massalski's "Speculations about Plessite" are: *acicular or type I plessite *black or type II plessite *cellular or type III plessite *comb plessite *net plessite *pearlitic plessite *spheroidized plessite See also * Glossary of meteoritics This is a glossary of terms used in meteoritics, the science of meteorites. # * 2 Pallas – an asteroid from the asteroid belt and one of the likely parent bodies of the CR meteorites. * 4 Vesta – second-larges ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mineral
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Minerals'; p. 1. In the series ''Geology: Landforms, Minerals, and Rocks''. Rosen Publishing Group. The Geology, geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic (such as calcite) or organic compounds in the sense of chemistry (such as mellite). Moreover, living organisms often synthesize inorganic minerals (such as hydroxylapatite) that also occur in rocks. The concept of mineral is distinct from rock (geology), rock, which is any bulk solid geologic material that is relatively homogeneous at a large enough scale. A rock may consist of one type of mineral or may be an aggregate (geology), aggregate of two or more different types of minerals, spaci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iron Meteorite
Iron meteorites, also called siderites or ferrous meteorites, are a type of meteorite that consist overwhelmingly of an iron–nickel alloy known as meteoric iron that usually consists of two mineral phases: kamacite and taenite. Most iron meteorites originate from cores of planetesimals, with the exception of the IIE iron meteorite group. The iron found in iron meteorites was one of the earliest sources of usable iron available to humans, due to the malleability and ductility of the meteoric iron, before the development of smelting that signaled the beginning of the Iron Age. Occurrence Although they are fairly rare compared to the stony meteorites, comprising only about 5.7% of witnessed falls, iron meteorites have historically been heavily over-represented in meteorite collections. This is due to several factors: * They are easily recognized as unusual, as opposed to stony meteorites. Modern-day searches for meteorites in deserts and Antarctica yield a much more repre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iron Minerals
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's outer and inner core. It is the fourth most abundant element in the Earth's crust, being mainly deposited by meteorites in its metallic state. Extracting usable metal from iron ores requires kilns or furnaces capable of reaching , about 500 °C (900 °F) higher than that required to smelt copper. Humans started to master that process in Eurasia during the 2nd millennium BC and the use of iron tools and weapons began to displace copper alloys – in some regions, only around 1200 BC. That event is considered the transition from the Bronze Age to the Iron Age. In the modern world, iron alloys, such as steel, stainless steel, cast iron and special steels, are by far the most common industrial metals, due to their mechanical p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]