HOME





T-structure
In the branch of mathematics called homological algebra, a ''t''-structure is a way to axiomatize the properties of an abelian subcategory of a derived category. A ''t''-structure on \mathcal consists of two subcategories (\mathcal^, \mathcal^) of a triangulated category or stable infinity category which abstract the idea of complexes whose cohomology vanishes in positive, respectively negative, degrees. There can be many distinct ''t''-structures on the same category, and the interplay between these structures has implications for algebra and geometry. The notion of a ''t''-structure arose in the work of Beilinson, Bernstein, Deligne, and Gabber on perverse sheaves. Definition Fix a triangulated category \mathcal with translation functor /math>. A ''t''-structure on \mathcal is a pair (\mathcal^, \mathcal^) of full subcategories, each of which is stable under isomorphism, which satisfy the following three axioms. # If ''X'' is an object of \mathcal^ and ''Y'' is an object o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangulated Category
In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology. In the 1960s, a typical use of triangulated categories was to extend properties of sheaves on a space ''X'' to complexes of sheaves, viewed as objects of the derived category of sheaves on ''X''. More recently, triangulated categories have become objects of interest in their own right. Many equivalences between triangulated categories of different origins have been proved or conjectured. For example, the homological mirror symmetry c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Motive (algebraic Geometry)
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety. In the formulation of Grothendieck for smooth projective varieties, a motive is a triple (X, p, m), where X is a smooth projective variety, p: X \vdash X is an idempotent correspondence, and ''m'' an integer; however, such a triple contains almost no information outside the context of Grothendieck's category of pure motives, where a morphism from (X, p, m) to (Y, q, n) is given by a correspondence of degree n-m. A more object-focused approach is taken by Pierre Deligne in ''Le Groupe Fondamental de la Droite Projective Moins Trois Points''. In that article, a motive is a "system of realisations" – that is, a tuple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perverse Sheaf
The mathematical term perverse sheaves refers to the objects of certain abelian categories associated to topological spaces, which may be a real or complex manifold, or more general topologically stratified spaces, possibly singular. The concept was introduced in the work of Joseph Bernstein, Alexander Beilinson, and Pierre Deligne and Ofer Gabber (1982) as a consequence of the Riemann-Hilbert correspondence, which establishes a connection between the derived categories regular holonomic D-modules and constructible sheaves. Perverse sheaves are the objects in the latter that correspond to individual D-modules (and not more general complexes thereof); a perverse sheaf ''is'' in general represented by a complex of sheaves. The concept of perverse sheaves is already implicit in a 75's paper of Kashiwara on the constructibility of solutions of holonomic D-modules. A key observation was that the intersection homology of Mark Goresky and Robert MacPherson could be described using ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Conjectures On Algebraic Cycles
In mathematics, the standard conjectures about algebraic cycles are several conjectures describing the relationship of algebraic cycles and Weil cohomology theories. One of the original applications of these conjectures, envisaged by Alexander Grothendieck, was to prove that his construction of pure motives gave an abelian category that is semisimple. Moreover, as he pointed out, the standard conjectures also imply the hardest part of the Weil conjectures, namely Weil's Riemann hypothesis (i.e. an analog over finite fields of the well known Riemann hypothesis) that remained open at the end of the 1960s and was proved later by Pierre Deligne; for details on the link between Weil and standard conjectures, see . The standard conjectures remain open problems, so that their application gives only conditional proofs of results. In quite a few cases, including that of the Weil conjectures, other methods have been found to prove such results unconditionally. The classical formulations of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or '' holes'', of a topological space. To define the ''n''th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never homeomorphic, but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan. Introduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Object (category Theory)
In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition. Definition An object ''X'' in a category ''C'' which admits all filtered colimits (also known as direct limits) is called ''compact'' if the functor :\operatorname_C(X, \cdot) : C \to \mathrm, Y \mapsto \operatorname_C(X, Y) commutes with filtered colimits, i.e., if the natural map :\operatorname \operatorname_C(X, Y_i) \to \operatorname_C(X, \operatorname_i Y_i) is a bijection for any filtered system of objects Y_i in ''C''. Since elements in the filtered colimit at the left are represented by maps X \to Y_i, for some ''i'', the surjectivity of the above map amounts to requiring that a map X \to \operatorname_i Y_i factors over some Y_i. The terminology is motivated by an example arising from topology mentioned below. Several authors also use a terminology which is more closely related to algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, the sum is defined (a, b) + (c, d) to be (a + c, b + d); in other words, addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. Direct sums can also be formed with any finite number of summands; for example, A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spaces). That relies on the fact that the direct sum is associative up to isomorphism. That is, (A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Opposite Category
In category theory, a branch of mathematics, the opposite category or dual category C^ of a given Category (mathematics), category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, (C^)^ = C. The construction can be generalized to ∞-category, ∞-categories using the opposite simplicial set. Examples * An example comes from reversing the direction of inequalities in a partial order. So if ''X'' is a Set (mathematics), set and ≤ a partial order relation, we can define a new partial order relation ≤op by :: ''x'' ≤op ''y'' if and only if ''y'' ≤ ''x''. : The new order is commonly called dual order of ≤, and is mostly denoted by ≥. Therefore, Order_theory#Duality, duality plays an important role in order theory and every purely order theoretic concept has a dual. For example, there ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Long Exact Sequence
In mathematics, an exact sequence is a sequence of morphisms between objects (for example, Group (mathematics), groups, Ring (mathematics), rings, Module (mathematics), modules, and, more generally, objects of an abelian category) such that the Image (mathematics), image of one morphism equals the kernel (algebra), kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other algebraic structures. For example, one could have an exact sequence of vector spaces and linear maps, or of modules and module homomorphisms. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]