Self-adjoint
In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. a = a^*). Definition Let \mathcal be a *-algebra. An element a \in \mathcal is called self-adjoint if The set of self-adjoint elements is referred to as A subset \mathcal \subseteq \mathcal that is closed under the involution *, i.e. \mathcal = \mathcal^*, is called A special case of particular importance is the case where \mathcal is a complete normed *-algebra, that satisfies the C*-identity (\left\, a^*a \right\, = \left\, a \right\, ^2 \ \forall a \in \mathcal), which is called a C*-algebra. Especially in the older literature on *-algebras and C*-algebras, such elements are often called Because of that the notations \mathcal_h, \mathcal_H or H(\mathcal) for the set of self-adjoint elements are also sometimes used, even in the more recent literature. Examples * Each positive element of a C*-algebra is * For each element a of a *-algebra, the elements a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Self-adjoint Operator
In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for all x, y ∊ ''V''. If ''V'' is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of ''A'' is a Hermitian matrix, i.e., equal to its conjugate transpose ''A''. By the finite-dimensional spectral theorem, ''V'' has an orthonormal basis such that the matrix of ''A'' relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as position, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Functional Calculus
In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra. In advanced theory, the applications of this functional calculus are so natural that they are often not even mentioned. It is no overstatement to say that the continuous functional calculus makes ''the'' difference between C*-algebras and general Banach algebras, in which only a holomorphic functional calculus exists. Motivation If one wants to extend the natural functional calculus for polynomials on the spectrum \sigma(a) of an element a of a Banach algebra \mathcal to a functional calculus for continuous functions C(\sigma(a)) on the spectrum, it seems obvious to approximate a continuous function by polynomials according to the Stone-Weierstrass theorem, to insert the element into these polynomials and to show that this sequence of elements converges to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Element
In mathematics, an element of a *-algebra is called positive if it is the sum of elements of the form Definition Let \mathcal be a *-algebra. An element a \in \mathcal is called positive if there are finitely many elements a_k \in \mathcal \; (k = 1,2,\ldots,n), so that a = \sum_^n a_k^*a_k This is also denoted by The set of positive elements is denoted by A special case from particular importance is the case where \mathcal is a complete normed *-algebra, that satisfies the C*-identity (\left\, a^*a \right\, = \left\, a \right\, ^2 \ \forall a \in \mathcal), which is called a C*-algebra. Examples * The unit element e of an unital *-algebra is positive. * For each element a \in \mathcal, the elements a^* a and aa^* are positive by In case \mathcal is a C*-algebra, the following holds: * Let a \in \mathcal_N be a normal element, then for every positive function f \geq 0 which is continuous on the spectrum of a the continuous functional calculus defines a positiv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adjoint Operator
In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where \langle \cdot,\cdot \rangle is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators can be represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H. The definition has been further extended to include unbounded '' densely defined'' operators, whose domain is topologically dense in, but not necessarily equal to, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Element
In mathematics, an element of a *-algebra is called normal if it commutates with its Definition Let \mathcal be a *-Algebra. An element a \in \mathcal is called normal if it commutes with a^*, i.e. it satisfies the equation The set of normal elements is denoted by \mathcal_N or A special case of particular importance is the case where \mathcal is a complete normed *-algebra, that satisfies the C*-identity (\left\, a^*a \right\, = \left\, a \right\, ^2 \ \forall a \in \mathcal), which is called a C*-algebra. Examples * Every self-adjoint element of a a *-algebra is * Every unitary element of a a *-algebra is * If \mathcal is a C*-Algebra and a \in \mathcal_N a normal element, then for every continuous function f on the spectrum of a the continuous functional calculus defines another normal element Criteria Let \mathcal be a *-algebra. Then: * An element a \in \mathcal is normal if and only if the *- subalgebra generated by a, meaning the smallest *-alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
*-algebra
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra; read as "star-algebra") is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution. Definitions *-ring In mathematics, a *-ring is a ring with a map that is an antiautomorphism and an involution. More precisely, is required to satisfy the following properties: * * * * for all in . This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant. Elements such that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : A \text \quad \iff \quad a_ = \overline or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as A \text \quad \iff \quad A = A^\mathsf Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although in quantum mechanics, A^\ast typically means the complex conjugate onl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nth Root
In mathematics, an th root of a number is a number which, when raised to the power of , yields : r^n = \underbrace_ = x. The positive integer is called the ''index'' or ''degree'', and the number of which the root is taken is the ''radicand.'' A root of degree 2 is called a ''square root'' and a root of degree 3, a '' cube root''. Roots of higher degree are referred by using ordinal numbers, as in ''fourth root'', ''twentieth root'', etc. The computation of an th root is a root extraction. For example, is a square root of , since , and is also a square root of , since . The th root of is written as \sqrt /math> using the radical symbol \sqrt. The square root is usually written as , with the degree omitted. Taking the th root of a number, for fixed , is the inverse of raising a number to the th power, and can be written as a fractional exponent: \sqrt = x^. For a positive real number , \sqrt denotes the positive square root of and \sqrt /math> denotes the pos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive And Negative Parts
In mathematics, the positive part of a real number, real or extended real number line, extended real-valued function (mathematics), function is defined by the formula f^+(x) = \max(f(x),0) = \begin f(x) & \text f(x) > 0 \\ 0 & \text \end Intuitively, the graph of a function, graph of f^+ is obtained by taking the graph of f, 'chopping off' the part under the -axis, and letting f^+ take the value zero there. Similarly, the negative part of is defined as f^-(x) = \max(-f(x),0) = -\min(f(x),0) = \begin -f(x) & \text f(x) 0]f \\ f^- &= -[f<0]f. \end One may define the positive and negative part of any function with values in a linearly ordered group. The unit ramp function is the positive part of the identity function. Measure-theoretic properties Given a sigma-algebra, measurable space , an extended real-valued function is measurable function, measurable if and only if its positive and negative parts are. Therefore, if such a function is measurab ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, the sum is defined (a, b) + (c, d) to be (a + c, b + d); in other words, addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. Direct sums can also be formed with any finite number of summands; for example, A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spaces). That relies on the fact that the direct sum is associative up to isomorphism. That is, (A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |