Secant (trigonometric Function)
Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety In algebraic geometry, the secant variety \operatorname(V), or the variety of chords, of a projective variety V \subset \mathbb^r is the Zariski closure of the union of all secant lines (chords) to ''V'' in \mathbb^r: :\operatorname(V) = \bigcup_ \o ..., in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciprocal) trigonometric function of the cosine * the secant method, a root-finding algorithm in numerical analysis, based on secant lines to graphs of functions * a secant ogive in nose cone design {{mathdab sr:Секанс ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Latin
Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area around Rome, Italy. Through the expansion of the Roman Republic, it became the dominant language in the Italian Peninsula and subsequently throughout the Roman Empire. It has greatly influenced many languages, Latin influence in English, including English, having contributed List of Latin words with English derivatives, many words to the English lexicon, particularly after the Christianity in Anglo-Saxon England, Christianization of the Anglo-Saxons and the Norman Conquest. Latin Root (linguistics), roots appear frequently in the technical vocabulary used by fields such as theology, List of Latin and Greek words commonly used in systematic names, the sciences, List of medical roots, suffixes and prefixes, medicine, and List of Latin legal terms ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Secant Line
In geometry, a secant is a line (geometry), line that intersects a curve at a minimum of two distinct Point (geometry), points.. The word ''secant'' comes from the Latin word ''secare'', meaning ''to cut''. In the case of a circle, a secant intersects the circle at exactly two points. A Chord (geometry), chord is the line segment determined by the two points, that is, the interval (mathematics), interval on the secant whose ends are the two points. Circles A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a ''secant line'', at one point a ''tangent line'' and at no points an ''exterior line''. A ''chord'' is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line determines a unique chord. In rigorous modern treatments of plane geometry, results that seem obvious and were assumed (without statement) by Euclid in Euclid's Elements, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Secant Variety
In algebraic geometry, the secant variety \operatorname(V), or the variety of chords, of a projective variety V \subset \mathbb^r is the Zariski closure of the union of all secant lines (chords) to ''V'' in \mathbb^r: :\operatorname(V) = \bigcup_ \overline (for x = y, the line \overline is the tangent line.) It is also the image under the projection p_3: (\mathbb^r)^3 \to \mathbb^r of the closure ''Z'' of the incidence variety :\. Note that ''Z'' has dimension 2 \dim V + 1 and so \operatorname(V) has dimension at most 2 \dim V + 1. More generally, the k^ secant variety is the Zariski closure of the union of the linear spaces spanned by collections of k+1 points on V. It may be denoted by \Sigma_k. The above secant variety is the first secant variety. Unless \Sigma_k=\mathbb^r, it is always singular along \Sigma_, but may have other singular points. If V has dimension ''d'', the dimension of \Sigma_k is at most kd+d+k. A useful tool for computing the dimension of a secant variety is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Secant (trigonometry)
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis. The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent functions. Their reciprocals are respectively the cosecant, the secant, and the cotangent functions, which are less used. Each of these six trigonometric functions has a corresponding inverse function, and an analog among the hyperbolic functions. The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for acute angles. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Secant Ogive
Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance. For many applications, such a task requires the definition of a solid of revolution shape that experiences minimal resistance to rapid motion through such a fluid medium. Nose cone shapes and equations Source: General dimensions Source: In all of the following nose cone shape equations, is the overall length of the nose cone and is the radius of the base of the nose cone. is the radius at any point , as varies from , at the tip of the nose cone, to . The equations define the two-dimensional profile of the nose shape. The full body of revolution of the nose cone is formed by rotating the profile around the centerline . While the equations describe the "perfect" shape, pra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |