HOME





Ring Spectrum
In stable homotopy theory, a ring spectrum is a spectrum ''E'' together with a multiplication map :''μ'': ''E'' ∧ ''E'' → ''E'' and a unit map : ''η'': ''S'' → ''E'', where ''S'' is the sphere spectrum. These maps have to satisfy associativity and unitality conditions up to homotopy, much in the same way as the multiplication of a ring is associative and unital. That is, : ''μ'' (id ∧ ''μ'') ~ ''μ'' (''μ'' ∧ id) and : ''μ'' (id ∧ ''η'') ~ id ~ ''μ''(''η'' ∧ id). Examples of ring spectra include singular homology with coefficients in a ring, complex cobordism, K-theory In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometr ..., and Morava K-theory. See also * Highly structured ring spectrum References * Algebraic topology Spectra (topology) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Homotopy Theory
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space X, the homotopy groups \pi_(\Sigma^n X) stabilize for n sufficiently large. In particular, the homotopy groups of spheres \pi_(S^n) stabilize for n\ge k + 2. For example, :\langle \text_\rangle = \Z = \pi_1(S^1)\cong \pi_2(S^2)\cong \pi_3(S^3)\cong\cdots :\langle \eta \rangle = \Z = \pi_3(S^2)\to \pi_4(S^3)\cong \pi_5(S^4)\cong\cdots In the two examples above all the maps between homotopy groups are applications of the suspension functor. The first example is a standard corollary of the Hurewicz theorem, that \pi_n(S^n)\cong \Z. In the second example the Hopf map, \eta, is mapped to its suspension \Sigma\eta, which generates \pi_4(S^3)\cong \Z/2. One of the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectrum (homotopy Theory)
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of colors in visible light after passing through a prism. In the optical spectrum, light wavelength is viewed as continuous, and spectral colors are seen to blend into one another smoothly when organized in order of their corresponding wavelengths. As scientific understanding of light advanced, the term came to apply to the entire electromagnetic spectrum, including radiation not visible to the human eye. ''Spectrum'' has since been applied by analogy to topics outside optics. Thus, one might talk about the " spectrum of political opinion", or the "spectrum of activity" of a drug, or the "autism spectrum". In these uses, values within a spectrum may not be associated with precisely quantifiable numbers or definitions. Such uses imply a broad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sphere Spectrum
In stable homotopy theory, a branch of mathematics, the sphere spectrum ''S'' is the monoidal unit in the category of spectra. It is the suspension spectrum of ''S''0, i.e., a set of two points. Explicitly, the ''n''th space in the sphere spectrum is the ''n''-dimensional sphere ''S''''n'', and the structure maps from the suspension of ''S''''n'' to ''S''''n''+1 are the canonical homeomorphisms. The ''k''-th homotopy group of a sphere spectrum is the ''k''-th stable homotopy group of spheres. The localization of the sphere spectrum at a prime number ''p'' is called the local sphere at ''p'' and is denoted by S_. See also * Chromatic homotopy theory * Adams-Novikov spectral sequence *Framed cobordism Framed may refer to: Common meanings *A painting or photograph that has been placed within a picture frame *Someone falsely shown to be guilty of a crime as part of a frameup Film and television *Framed (1930 film), ''Framed'' (1930 film), a pre ... References * Algebraic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Associativity
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replacement for well-formed formula, expressions in Formal proof, logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the Operation (mathematics), operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (algebra)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defined a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the simplex, standard -simplex to a topological space, and composing them into Free abelian group#Integer functions and formal sums, formal sums, called singular chains. The boundary operation – mapping each n-dimensional simplex to its (n-1)-dimensional boundary operator, boundary – induces the singular chain complex. The singular homology is then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Cobordism
In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute. The generalized homology and cohomology complex cobordism theories were introduced by using the Thom spectrum. Spectrum of complex cobordism The complex bordism MU^*(X) of a space X is roughly the group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle. Complex bordism is a generalized homology theory, corresponding to a spectrum MU that can be described explicitly in terms of Thom spaces as follows. The space MU(n) is the Thom space of the universal n-plane bundle over the classifying space BU(n) of the unitary group U(n). The natural i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




K-theory
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices. K-theory involves the construction of families of ''K''-functors that map from topological spaces or schemes, or to be even more general: any object of a homotopy category to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to groups in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morava K-theory
In stable homotopy theory, a branch of mathematics, Morava K-theory is one of a collection of cohomology theories introduced in algebraic topology by Jack Morava in unpublished preprints in the early 1970s. For every prime number ''p'' (which is suppressed in the notation), it consists of theories ''K''(''n'') for each nonnegative integer ''n'', each a ring spectrum in the sense of homotopy theory. published the first account of the theories. Details The theory ''K''(0) agrees with singular homology with rational coefficients, whereas ''K''(1) is a summand of mod-''p'' complex K-theory. The theory ''K''(''n'') has coefficient ring :F''p'' 'v''''n'',''v''''n''−1 where ''v''''n'' has degree 2(''p''''n'' − 1). In particular, Morava K-theory is periodic with this period, in much the same way that complex K-theory has period 2. These theories have several remarkable properties. * They have Künneth isomorphisms for arbitrary pairs of spaces: that is, for '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Highly Structured Ring Spectrum
In mathematics, a highly structured ring spectrum or A_\infty-ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an A_\infty-ring is called an E_\infty-ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the .... Background Highly structured ring spectra have better formal properties than multiplicative cohomology theories – a point utilized, for example, in the construction of topological modular forms, and which has allowed also new constructions of more classical objects such as Morava K-theory. Beside their formal properties, E_\infty-structures are also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectra (topology)
Spectra may refer to: * The plural of spectrum, conditions or values that vary over a continuum, especially the colours of visible light * ''Spectra'' (journal), of the Museum Computer Network (MCN) * The plural of spectrum (topology), an object representing a generalized cohomology theory in algebraic topology * Spectra (mathematical association), an association of LGBT mathematicians * Spectra (Latreille 1802), an order of stick-insects, or Phasmatodea Companies and products * Kia Spectra, a car developed by Kia Motors from 2000 to the present. * Motorola Spectra and Astro Spectra, models of two-way radio. * Optare Spectra, a bus body built by Optare. * Polaroid Spectra, a type of instant camera and instant film formerly produced by the Polaroid Corporation. * RCA Spectra 70, the name for a series of mainframe computers made by RCA, and which were sold to Univac to become the Univac 90/60 series computer. * Spectra, a brand of ultra-high-molecular-weight polyethylene fib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]