HOME
*





Quantum Field Theory In Curved Spacetime
In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multi graviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes. Overview Ordinary quantum field theories, which form the basis of standard model, are defined in flat Minkowski space, which is an excellent approximation when it comes to describing the behavior of microscopic particles in weak gravitational fields like those found on Earth. In order to describe situations in which gravity is strong e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressure by around 20%. B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unruh Effect
The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe none. In other words, the background appears to be warm from an accelerating reference frame; in layman's terms, an accelerating thermometer (like one being waved around) in empty space, removing any other contribution to its temperature, will record a non-zero temperature, just from its acceleration. Heuristically, for a uniformly accelerating observer, the ground state of an inertial observer is seen as a mixed state in thermodynamic equilibrium with a non-zero temperature bath. The Unruh effect was first described by Stephen Fulling in 1973, Paul Davies in 1975 and W. G. Unruh in 1976. It is currently not clear whether the Unruh effect has actually been observed, since the claimed observations are disputed. There is also some doub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Fields
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory in quantum mechanics. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Gravity
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars. Three of the four fundamental forces of physics are described within the framework of quantum mechanics and quantum field theory. The current understanding of the fourth force, gravity, is based on Albert Einstein's general theory of relativity, which is formulated within the entirely different framework of classical physics. However, that description is incomplete: describing the gravitational field of a black hole in the general theory of relativity leads physical quantities, such as the spacetime curvature, to diverge at the center of the black hole. This signals the breakdown of the general theory of relativity and the need for a theory that goe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semiclassical Physics
Semiclassical physics, or simply semiclassical refers to a theory in which one part of a system is described quantum mechanically whereas the other is treated classically. For example, external fields will be constant, or when changing will be classically described. In general, it incorporates a development in powers of Planck's constant, resulting in the classical physics of power 0, and the first nontrivial approximation to the power of (−1). In this case, there is a clear link between the quantum-mechanical system and the associated semi-classical and classical approximations, as it is similar in appearance to the transition from physical optics to geometric optics. Instances Some examples of a semiclassical approximation include: * WKB approximation: electrons in classical external electromagnetic fields. * semiclassical gravity: quantum field theory within a classical curved gravitational background (see general relativity). * quantum chaos; quantization of class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perturbation Theory (quantum Mechanics)
In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system (e.g. its energy levels and eigenstates) can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system. Approximate Hamiltonians Perturbation theory is an important tool f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Renormalization
Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian. For example, an electron theory may begin by postulating an electron with an initial mass and charge. In quantum field theory a cloud of virtual particles, such as photons, positrons, and others surrounds and interacts with the initial electron. Accounting for the interactions of the surrounding particles (e.g. collisions at different energies) shows that the electron-system behaves as if it had a different mass and charge than initially postulated. Renormalization, in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel Kastler
Daniel Kastler (; 4 March 1926 – 4 July 2015) was a French theoretical physicist, working on the foundations of quantum field theory and on non-commutative geometry. Biography Daniel Kastler was born on March 4, 1926, in Colmar, a city of north-eastern France. He is the son of the Physics Nobel Prize laureate Alfred Kastler. In 1946 he enrolled at the École Normale Superieure in Paris. In 1950 he moved to Germany and became lecturer at the Saarland University. In 1953, he was promoted to associate professor and obtained a doctorate in quantum chemistry. In 1957 Kastler moved to the University of Aix-Marseille and became a full professor in 1959. In 1968 he founded, together with Jean-Marie Souriau and Andrea Visconti, the Center of Theoretical Physics in Marseille. Daniel Kastler died on July 8, 2015, in Bandol, in southern France. Daniel Kastler is known in particular for his work with Rudolf Haag on the foundation of the algebraic approach to quantum field theory. Their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rudolf Haag
Rudolf Haag (17 August 1922 – 5 January 2016) was a German theoretical physicist, who mainly dealt with fundamental questions of quantum field theory. He was one of the founders of the modern formulation of quantum field theory and he identified the formal structure in terms of the principle of locality and local observables. He also made important advances in the foundations of quantum statistical mechanics. Biography Rudolf Haag was born on 17 August 1922, in Tübingen, a university town in the middle of Baden-Württemberg. His family belonged to the cultured middle class. Haag's mother was the writer and politician Anna Haag. His father, Albert Haag, was a teacher of mathematics at a Gymnasium. After finishing high-school in 1939, he visited his sister in London shortly before the beginning of World War II. He was interned as an enemy alien and spent the war in a camp of German civilians in Manitoba. There he used his spare-time after the daily compulsory labour t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Quantum Field Theory
The Haag–Kastler axiomatic framework for quantum field theory, introduced by , is an application to local quantum physics of C*-algebra theory. Because of this it is also known as algebraic quantum field theory (AQFT). The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Haag–Kastler axioms Let \mathcal be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net \_ of von Neumann algebras \mathcal(O) on a common Hilbert space \mathcal satisfying the following axioms: * ''Isotony'': O_1 \subset O_2 implies \mathcal(O_1) \subset \mathcal(O_2). * ''Causality'': If O_1 is space-like separated from O_2, then mathcal(O_1),\mathcal(O_2)0. * ''Poincaré covariance'': A strongly continuous unitary representation U(\mathcal) of the Poincaré group \mathcal on \mathcal exists such that \mathcal(gO) = U(g) \mathcal(O) U(g)^*, g \in \mathcal. * ''Spectrum condition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heat Bath
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is also often used to refer to the thermal energy contained in a system as a component of its internal energy and that is reflected in the temperature of the system. For both uses of the term, heat is a form of energy. An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat. The hot metal bar is also transferring heat to its surroundings, a correct statement for both the strict and loose meanings of ''heat''. Another example of informal usage is the term '' heat content'', used despite the fact that ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]