Pyranose
In organic chemistry, pyranose is a collective term for saccharides that have a chemical structure that includes a six-membered ring consisting of five carbon atoms and one oxygen atom (a heterocycle). There may be other carbons external to the ring. The name derives from its similarity to the oxygen heterocycle pyran, but the pyranose ring does not have double bonds. A pyranose in which the anomeric (hydroxyl group) at C(l) has been converted into an OR group is called a pyranoside. Formation The pyranose ring is formed by the reaction of the hydroxyl group on carbon 5 (C-5) of a sugar with the aldehyde at carbon 1. This forms an intramolecular hemiacetal. If reaction is between the C-4 hydroxyl and the aldehyde, a furanose is formed instead. The pyranose form is thermodynamically more stable than the furanose form, which can be seen by the distribution of these two cyclic forms in solution. History Hermann Emil Fischer won the Nobel Prize in Chemistry (1902) fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Glucopyranose Conformations (linear Format)
Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight. It is used by plants to make cellulose, the most abundant carbohydrate in the world, for use in cell walls, and by all living Organism, organisms to make adenosine triphosphate (ATP), which is used by the cell as energy. In energy metabolism, glucose is the most important source of energy in all organisms. Glucose for metabolism is stored as a polymer, in plants mainly as amylose and amylopectin, and in animals as glycogen. Glucose circulates in the blood of animals as blood sugar. The naturally occurring form is -glucose, while its Stereoisomerism, stereoisomer L-glucose, -glucose is produced synthetically in comparatively small amounts and is less biologicall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anomer
In carbohydrate chemistry, a pair of anomers () is a pair of near-identical stereoisomers or diastereomers that differ at only the anomeric carbon, the carbon atom that bears the aldehyde or ketone functional group in the sugar's open-chain form. However, in order for anomers to exist, the sugar must be in its cyclic form, since in open-chain form, the anomeric carbon atom is planar and thus achiral. More formally stated, then, an anomer is an epimer at the hemiacetal/hemiketal carbon atom in a cyclic saccharide. Anomerization is the process of conversion of one anomer to the other. As is typical for stereoisomeric compounds, different anomers have different physical properties, melting points and specific rotations. Nomenclature Every two anomers are designated alpha (α) or beta (β), according to the configurational relationship between the ''anomeric centre'' and the ''anomeric reference atom'', hence they are relative stereodescriptors. The anomeric centre in hemiac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Saccharide
A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' may differ). This formula does not imply direct covalent bonding between hydrogen and oxygen atoms; for example, in , hydrogen is covalently bonded to carbon, not oxygen. While the 2:1 hydrogen-to-oxygen ratio is characteristic of many carbohydrates, exceptions exist. For instance, uronic acids and deoxy-sugars like fucose deviate from this precise stoichiometric definition. Conversely, some compounds conforming to this definition, such as formaldehyde and acetic acid, are not classified as carbohydrates. The term is predominantly used in biochemistry, functioning as a synonym for saccharide (), a group that includes sugars, starch, and cellulose. The saccharides are divided into four chemical groups: monosaccharides, disaccharides, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aldohexose
In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is , and their molecular weight is 180.156 g/mol. Hexoses exist in two forms, open-chain or cyclic, that easily convert into each other in aqueous solutions. The open-chain form of a hexose, which usually is favored in solutions, has the general structure , where ''n'' is 1, 2, 3, 4, 5. Namely, five of the carbons have one hydroxyl functional group () each, connected by a single bond, and one has an oxo group (), forming a carbonyl group (). The remaining bonds of the carbon atoms are satisfied by seven hydrogen atoms. The carbons are commonly numbered 1 to 6 starting at the end closest to the carbonyl. Hexoses are extremely important in biochemistry, both as isolated molecules (such as glucose and fructose) and as building blocks of other compounds such as starch, cellulose, and glycosides. Hexoses can form dihexose (like sucrose) by a condensation reacti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Haworth Projection
In chemistry, a Haworth projection is a common way of writing a structural formula to represent the cyclic structure of monosaccharides with a simple three-dimensional perspective. A Haworth projection approximates the shapes of the actual molecules better for furanoses—which are in reality nearly planar—than for pyranoses that exist in solution in the chair conformation. Organic chemistry and especially biochemistry are the areas of chemistry that use the Haworth projection the most. The Haworth projection was named after the British chemist Sir Norman Haworth. A Haworth projection has the following characteristics: * Carbon is the implicit type of atom. In the example on the right, the atoms numbered from 1 to 6 are all carbon atoms. Carbon 1 is known as the anomeric carbon. * Hydrogen atoms on carbon are implicit. In the example, atoms 1 to 6 have extra hydrogen atoms not depicted. * A thicker line indicates atoms that are closer to the observer. In the example on the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structural Formula
The structural formula of a chemical compound is a graphic representation of the molecular structure (determined by structural chemistry methods), showing how the atoms are connected to one another. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types, which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections. Several systematic chemical naming formats, as in chemical databases, are used that are equivalent to, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Haworth Projection
In chemistry, a Haworth projection is a common way of writing a structural formula to represent the cyclic structure of monosaccharides with a simple three-dimensional perspective. A Haworth projection approximates the shapes of the actual molecules better for furanoses—which are in reality nearly planar—than for pyranoses that exist in solution in the chair conformation. Organic chemistry and especially biochemistry are the areas of chemistry that use the Haworth projection the most. The Haworth projection was named after the British chemist Sir Norman Haworth. A Haworth projection has the following characteristics: * Carbon is the implicit type of atom. In the example on the right, the atoms numbered from 1 to 6 are all carbon atoms. Carbon 1 is known as the anomeric carbon. * Hydrogen atoms on carbon are implicit. In the example, atoms 1 to 6 have extra hydrogen atoms not depicted. * A thicker line indicates atoms that are closer to the observer. In the example on the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aldehyde
In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology. Structure and bonding Aldehyde molecules have a central carbon atom that is connected by a double bond to oxygen, a single bond to hydrogen and another single bond to a third substituent, which is carbon or, in the case of formaldehyde, hydrogen. The central carbon is often described as being sp2- hybridized. The aldehyde group is somewhat polar. The bond length is about 120–122 picometers. Physical properties and characterization Aldehydes have properties that are diverse and that depend on the remainder of the molecule. Smaller aldehydes such as formaldehyde and acetaldehyde are solubl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hemiacetal
In organic chemistry, a hemiacetal is a functional group the general formula , where is a hydrogen atom or an organic substituent. They generally result from the nucleophilic Addition reaction, addition of an Alcohol (chemistry), alcohol (a compound with at least one hydroxy group) to an aldehyde () or a ketone () under acidic conditions. The addition of an alcohol to a ketone is more commonly referred to as a hemiketal. Common examples of hemiacetals include cyclic Monosaccharide, monosaccharides. Hemiacetals have use as a protecting group and in synthesizing oxygenated heterocycles like Tetrahydrofuran, tetrahydrofurans. Nomenclature According to the IUPAC definition of a hemiacetal, the R1 and R2 groups may or may not be hydrogen. In a hemiketal, both of these R-groups must not be hydrogen. Thus, hemiketals are regarded as a subclass of hemiacetals. The prefix ''hemi,'' meaning half, refers to the one alcohol added to the carbonyl group. This is half of the required alcohols to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pyran
In chemistry, pyran is a six-membered heterocyclic, non-aromatic ring, consisting of five carbon atoms and one oxygen atom and containing two double bonds. The molecular formula is C5H6O. There are two isomers of pyran that differ by the location of the double bonds. In 2''H''-pyran, the saturated carbon is at position 2, whereas, in 4''H''-pyran, the saturated carbon is at position 4. "Oxine” is not used for pyran because it has been used as a trivial name for quinolin-8-ol. 4''H''-Pyran was first isolated and characterized in 1962 via pyrolysis of 2-acetoxy-3,4-dihydro-2''H''-pyran. It was found to be unstable, particularly in the presence of air. 4''H''-pyran easily disproportionates to the corresponding dihydropyran and the pyrylium ion, which is easily hydrolyzed in aqueous medium. Although the pyrans themselves have little significance in chemistry, many of their derivatives are important biological molecules, such as the pyranoflavonoids. The term pyran is also often ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Walter Haworth
Sir Walter Norman Haworth FRS (19 March 1883 – 19 March 1950) was a British chemist best known for his groundbreaking work on ascorbic acid (vitamin C) while working at the University of Birmingham. He received the 1937 Nobel Prize in Chemistry "for his investigations on carbohydrates and vitamin C". The prize was shared with Swiss chemist Paul Karrer for his work on other vitamins. Haworth worked out the correct structure of a number of sugars, and is known among organic chemists for his development of the Haworth projection that translates three-dimensional sugar structures into convenient two-dimensional graphical form. Academic career Having worked for some time from the age of fourteen in the local Ryland's linoleum factory managed by his father, he studied for and successfully passed the entrance examination to the University of Manchester in 1903 to study chemistry. He made this pursuit in spite of active discouragement by his parents. He gained his first-class honou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edmund Hirst
Sir Edmund Langley Hirst CBE FRS FRSE (21 July 1898 – 29 October 1975), was a British chemist. Life Hirst was born in Preston, Lancashire, on 21 July 1898, the son of Elizabeth (née Langley) and Rev Sim Hirst (1856-1923), a Baptist minister. He was educated in Burnley, Northgate Grammar School, Ipswich, Madras College in St Andrews, then studied chemistry at the University of St Andrews with a Carnegie Scholarship. In World War I he was conscripted in 1917 and persuaded the authorities to return him to the University of St Andrews to study mustard gas. For the final year he served with the Special Brigade of the Royal Engineers in France. Returning to University in February 1919, he then obtained his BSc, followed by a doctorate (PhD) in 1921. In 1923, he began lecturing at the University of Manchester and in 1924 went to the Armstrong College in Newcastle-upon-Tyne. Here, he assisted Norman Haworth in 1934 when he became the first to synthesize Vitamin C. In 1947, he mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |