Pseudo-random
A pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Pseudorandom number generators are often used in computer programming, as traditional sources of randomness available to humans (such as rolling dice) rely on physical processes not readily available to computer programs, although developments in hardware random number generator technology have challenged this. Background The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling. In physics, however, most processes, such as gravitational acceleration, are deterministic, meaning that they always produce the same outcome from the same starting point. Some notable exceptions are radioactive decay and quantum measurement, which are both modeled as being truly random processes in the underlying physics. Since these processes are not practical sources of r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monte Carlo Methods
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on Resampling (statistics), repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic system, deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, mathematician Stanisław Ulam, was inspired by his uncle's gambling habits. Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure. Monte Carlo methods are often implemented using computer simulations, and they can provide approximate solutions to problems that are otherwise intractable or too complex to analyze mathematically. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudorandom Number Generator
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random number generation, random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's ''random seed, seed'' (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, ''pseudorandom number generators'' are important in practice for their speed in number generation and their reproducibility. PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable from earlier outputs, and more cryptographically-secure pseudorandom number generator, elabora ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Distribution
In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical description of a Randomness, random phenomenon in terms of its sample space and the Probability, probabilities of Event (probability theory), events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that fair coin, the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different random values. Probability distributions can be defined in different ways and for discrete or for continuous variables. Distributions with special properties or for especially important applications are given specific names. Introduction A prob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sampling (statistics)
In this statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a population (statistics), statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population (in many cases, collecting the whole population is impossible, like getting sizes of all stars in the universe), and thus, it can provide insights in cases where it is infeasible to measure an entire population. Each observation measures one or more properties (such as weight, location, colour or mass) of independent objects or individuals. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly in stratified samplin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Seed
A random seed (or seed state, or just seed) is a number (or vector) used to initialize a pseudorandom number generator. A pseudorandom number generator's number sequence is completely determined by the seed: thus, if a pseudorandom number generator is later reinitialized with the same seed, it will produce the same sequence of numbers. For a seed to be used in a pseudorandom number generator, it does not need to be random. Because of the nature of number generating algorithms, so long as the original seed is ignored, the rest of the values that the algorithm generates will follow probability distribution in a pseudorandom manner. However, a non-random seed will be cryptographically insecure, as it can allow an adversary to predict the pseudorandom numbers generated. The choice of a good random seed is crucial in the field of computer security. When a secret encryption key is pseudorandomly generated, having the seed will allow one to obtain the key. High entropy is importan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistical Randomness
A numeric sequence is said to be statistically random when it contains no recognizable patterns or regularities; sequences such as the results of an ideal dice, dice roll or the digits of pi, π exhibit statistical randomness. Statistical randomness does not necessarily imply "true" randomness, i.e., objective Predictability, unpredictability. Pseudorandomness is sufficient for many uses, such as statistics, hence the name ''statistical'' randomness. ''Global randomness'' and ''local randomness'' are different. Most philosophical conceptions of randomness are global—because they are based on the idea that "in the long run" a sequence looks truly random, even if certain sub-sequences would ''not'' look random. In a "truly" random sequence of numbers of sufficient length, for example, it is probable there would be long sequences of nothing but repeating numbers, though on the whole the sequence might be random. ''Local'' randomness refers to the idea that there can be minimum s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
A Million Random Digits With 100,000 Normal Deviates
''A Million Random Digits with 100,000 Normal Deviates'' is a random number book by the RAND Corporation, originally published in 1955. The book, consisting primarily of a random number table, was an important 20th century work in the field of statistics and random numbers. Production and background It was produced starting in 1947 by an electronic simulation of a roulette wheel attached to a computer, the results of which were then carefully filtered and tested before being used to generate the table. The RAND table was an important breakthrough in delivering random numbers, because such a large and carefully prepared table had never before been available. In addition to being available in book form, one could also order the digits on a series of punched cards. The table is formatted as 400 pages, each containing 50 lines of 50 digits. Columns and lines are grouped in fives, and the lines are numbered 00000 through 19999. The standard normal deviates are another 200 pa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Computer Science
Theoretical computer science is a subfield of computer science and mathematics that focuses on the Abstraction, abstract and mathematical foundations of computation. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with A Mathematical Theory of Communication, a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of neural networks and para ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cryptography
Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), adversarial behavior. More generally, cryptography is about constructing and analyzing Communication protocol, protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security (confidentiality, data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, Smart card#EMV, chip-based payment cards, digital currencies, password, computer passwords, and military communications. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and explores the relationships between these classifications. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of logic gate, gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). O ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |