Propositional Function
In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (''x'') that is not defined or specified (thus being a free variable), which leaves the statement undetermined. The sentence may contain several such variables (e.g. ''n'' variables, in which case the function takes ''n'' arguments). Overview As a mathematical function, ''A''(''x'') or ''A''(''x'', ''x'', ..., ''x''), the propositional function is abstracted from predicates or propositional forms. As an example, consider the predicate scheme, "x is hot". The substitution of any entity for ''x'' will produce a specific proposition that can be described as either true or false, even though "''x'' is hot" on its own has no value as either a true or false statement. However, when a value is assigned to ''x'', such as lava, the function then has the value ''true''; while one assigns to '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Calculus
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be Truth value, true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of Logical conjunction, conjunction, Logical disjunction, disjunction, Material conditional, implication, Logical biconditional, biconditional, and negation. Some sources include other connectives, as in the table below. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of California Press
The University of California Press, otherwise known as UC Press, is a publishing house associated with the University of California that engages in academic publishing. It was founded in 1893 to publish scholarly and scientific works by faculty of the University of California, established 25 years earlier in 1868. As the publishing arm of the University of California system, the press publishes over 250 new books and almost four dozen multi-issue journals annually, in the humanities, social sciences, and natural sciences, and maintains approximately 4,000 book titles in print. It is also the digital publisher of Collabra and Luminos open access (OA) initiatives. The press has its administrative office in downtown Oakland, California, an editorial branch office in Los Angeles, and a sales office in New York City, New York, and distributes through marketing offices in Great Britain, Asia, Australia, and Latin America. A Board consisting of senior officers of the University of Cali ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Relations
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to prove properties of objects, a ''proof'' consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstractio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functions And Mappings
In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but '' transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a "continuous function" in topology, a "linear transformation" in linear algebra, etc. So ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open Sentence
An open formula is a formula that contains at least one free variable. An open formula does not have a truth value assigned to it, in contrast with a closed formula which constitutes a proposition and thus can have a truth value like ''true'' or ''false''. An open formula can be transformed into a closed formula by applying a quantifier for each free variable. This transformation is called capture of the free variables to make them bound variables. For example, when reasoning about natural numbers, the formula "''x''+2 > ''y''" is open, since it contains the free variables ''x'' and ''y''. In contrast, the formula " ∃''y'' ∀''x'': ''x''+2 > ''y''" is closed, and has truth value ''true''. Open formulas are often used in rigorous mathematical definitions of properties, like :"''x'' is an aunt of ''y'' if, for some person ''z'', ''z'' is a parent of ''y'', and ''x'' is a sister of ''z''" (with free variables ''x'', ''y'', and bound variable ''z'') defining the notion of "aunt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truth Function
In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional. Classical propositional logic is a truth-functional logic, in that every statement has exactly one truth value which is either true or false, and every logical connective is truth functional (with a correspondent truth table), thus every compound statement is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sentence (logic)
In mathematical logic, a sentence (or closed formula)Edgar Morscher, "Logical Truth and Logical Form", ''Grazer Philosophische Studien'' 82(1), pp. 77–90. of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that ''must'' be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary. Sentences without any logical connectives or quantifiers in them are known as atomic sentences; by analogy to atomic formula. Sentences are then built up out of atomic sentences by applying connectives and quantifiers. A set of sentences is called a theory; thus, individual sentences may be called theorems. To properly evaluate the truth (or falsehood) of a sentence, one must make reference to an interpr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formula (logic)
In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. The abbreviation wff is pronounced "woof", or sometimes "wiff", "weff", or "whiff". A formal language can be identified with the set of formulas in the language. A formula is a syntactic object that can be given a semantic meaning by means of an interpretation. Two key uses of formulas are in propositional logic and predicate logic. Introduction A key use of formulas is in propositional logic and predicate logic such as first-order logic. In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any free variables in φ have been instantiated. In formal logic, proofs can be represented by sequences of formulas with certain properties, and the final formula in the sequence is what is proven. Although the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean-valued Function
A Boolean-valued function (sometimes called a predicate or a proposition) is a function of the type f : X → B, where X is an arbitrary set and where B is a Boolean domain, i.e. a generic two-element set, (for example B = ), whose elements are interpreted as logical values, for example, 0 = false and 1 = true, i.e., a single bit of information. In the formal sciences, mathematics, mathematical logic, statistics, and their applied disciplines, a Boolean-valued function may also be referred to as a characteristic function, indicator function, predicate, or proposition. In all of these uses, it is understood that the various terms refer to a mathematical object and not the corresponding semiotic sign or syntactic expression. In formal semantic theories of truth, a truth predicate is a predicate on the sentences of a formal language, interpreted for logic, that formalizes the intuitive concept that is normally expressed by saying that a sentence is true. A truth predicate may ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Formula
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as ''p'' and ''q'', using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: : (''p'' AND NOT ''q'') IMPLIES (''p'' OR ''q''). In mathematics, a propositional formula is often more briefly referred to as a "proposition", but, more precisely, a propositional formula is not a proposition but a formal expression that ''denotes'' a proposition, a formal object under discussion, just like an expression such as "" is not a value, but denotes a value. In some contexts, maintaining the distinction may be of importanc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heterogeneous Relation
In mathematics, a binary relation associates some elements of one set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs (x, y), where x is an element of X and y is an element of Y. It encodes the common concept of relation: an element x is ''related'' to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the " divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime p is related to each integer z that is a multiple of p, but not to an integer that is not a multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as -4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13. Binary relations, and especially homogeneous relations, are used in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homogeneous Relation
In mathematics, a homogeneous relation (also called endorelation) on a set ''X'' is a binary relation between ''X'' and itself, i.e. it is a subset of the Cartesian product . This is commonly phrased as "a relation on ''X''" or "a (binary) relation over ''X''". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include order (mathematics), orders, graph (discrete mathematics), graphs, and equivalence relation, equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations. Terminology particular for graph theory is used for description, with an ordinary (undirected) graph presumed to correspond to a symmetric relation, and a general endorelation corresponding to a directed graph. An endorelation ''R'' corresponds to a logical matrix of 0s and 1s, where the expression ''xRy'' (''x'' is ''R''-related to ''y'') corresponds to an edge between ''x'' and ''y' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |