HOME





Predictable Process
In stochastic analysis, a part of the mathematical theory of probability, a predictable process is a stochastic process whose value is knowable at a prior time. The predictable processes form the smallest class that is closed under taking limits of sequences and contains all adapted left-continuous processes. Mathematical definition Discrete-time process Given a filtered probability space (\Omega,\mathcal,(\mathcal_n)_,\mathbb), then a stochastic process (X_n)_ is ''predictable'' if X_ is measurable with respect to the σ-algebra \mathcal_n for each ''n''. Continuous-time process Given a filtered probability space (\Omega,\mathcal,(\mathcal_t)_,\mathbb), then a continuous-time stochastic process (X_t)_ is ''predictable'' if X, considered as a mapping from \Omega \times \mathbb_ , is measurable with respect to the σ-algebra generated by all left-continuous adapted processes. This σ-algebra is also called the predictable σ-algebra. Examples * Every dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Analysis
Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyosi Itô during World War II. The best-known stochastic process to which stochastic calculus is applied is the Wiener process (named in honor of Norbert Wiener), which is used for modeling Brownian motion as described by Louis Bachelier in 1900 and by Albert Einstein in 1905 and other physical diffusion processes in space of particles subject to random forces. Since the 1970s, the Wiener process has been widely applied in financial mathematics and economics to model the evolution in time of stock prices and bond interest rates. The main flavours of stochastic calculus are the Itô calculus and its variational relative the Malliavin calculus. For technical reasons the Itô integral is the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th ed., (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', vol. 1, 3rd ed., (1968), Wiley, . This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These concepts have been given an axiomatic mathematical formaliza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology Ecology () is the natural science of the relationships among living organisms and their Natural environment, environment. Ecology considers organisms at the individual, population, community (ecology), community, ecosystem, and biosphere lev ..., neuroscience, physics, image processing, signal processing, stochastic control, control theory, information theory, computer scien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adapted Process
In the study of stochastic processes, a stochastic process is adapted (also referred to as a non-anticipating or non-anticipative process) if information about the value of the process at a given time is available at that same time. An informal interpretation is that ''X'' is adapted if and only if, for every realisation and every ''n'', ''Xn'' is known at time ''n''. The concept of an adapted process is essential, for instance, in the definition of the Itō integral, which only makes sense if the integrand is an adapted process. Definition Let * (\Omega, \mathcal, \mathbb) be a probability space; * I be an index set with a total order \leq (often, I is \mathbb, \mathbb_0, , T/math> or filtration of the sigma algebra \mathcal; * (S,\Sigma) be a measurable space, the ''state space''; * X_i: I \times \Omega \to S be a stochastic process. The stochastic process (X_i)_ is said to be adapted to the filtration \left(\mathcal_i\right)_ if the random variable X_i: \Omega \to S is a (\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtered Probability Space
In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes. Definition Let (\Omega, \mathcal A, P) be a probability space and let I be an index set with a total order \leq (often \N , \R^+ , or a subset of \mathbb R^+ ). For every i \in I let \mathcal F_i be a sub-''σ''-algebra of \mathcal A . Then : \mathbb F:= (\mathcal F_i)_ is called a filtration, if \mathcal F_k \subseteq \mathcal F_\ell for all k \leq \ell . So filtrations are families of ''σ''-algebras that are ordered non-decreasingly. If \mathbb F is a filtration, then (\Omega, \mathcal A, \mathbb F, P) is called a filtered probability space. Example Let (X_n)_ be a stochastic process on the probability space (\Omega, \mathcal A, P) . Let \sigma(X_k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Measurable Function
In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sigma Algebra
Sigma ( ; uppercase Σ, lowercase σ, lowercase in word-final position ς; ) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as an operator for summation. When used at the end of a letter-case word (one that does not use all caps), the final form (ς) is used. In ' (Odysseus), for example, the two lowercase sigmas (σ) in the center of the name are distinct from the word-final sigma (ς) at the end. The Latin letter S derives from sigma while the Cyrillic letter Es derives from a lunate form of this letter. History The shape (Σς) and alphabetic position of sigma is derived from the Phoenician letter ( ''shin''). Sigma's original name may have been ''san'', but due to the complicated early history of the Greek epichoric alphabets, ''san'' came to be identified as a separate letter in the Greek alphabet, represented as Ϻ. Herodotus reports that "san" was the name g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous-time Stochastic Process
In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values. An alternative terminology uses continuous parameter as being more inclusive. A more restricted class of processes are the continuous stochastic processes; here the term often (but not alwaysDodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', OUP. (Entry for "continuous process")) implies both that the index variable is continuous and that sample paths of the process are continuous. Given the possible confusion, caution is needed. Continuous-time stochastic processes that are constructed from discrete-time processes via a waiting time distribution are called continuous-time random walks. Examples An example of a continuous-time stochastic process for which samp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


σ-algebra
In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra") is part of the formalism for defining sets that can be measured. In calculus and analysis, for example, σ-algebras are used to define the concept of sets with area or volume. In probability theory, they are used to define events with a well-defined probability. In this way, σ-algebras help to formalize the notion of ''size''. In formal terms, a σ-algebra (also σ-field, where the σ comes from the German "Summe", meaning "sum") on a set ''X'' is a nonempty collection Σ of subsets of ''X'' closed under complement, countable unions, and countable intersections. The ordered pair (X, \Sigma) is called a measurable space. The set ''X'' is understood to be an ambient space (such as the 2D plane or the set of outcomes when rolling a six-sided die ), and the collection Σ is a choice of subsets declared to have a well-defined size. The closure requirements for σ-algebras are designed to cap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deterministic System
In mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. In physics Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly. In quantum mechanics, the Schrödinger equation, which describes the continuous time evolution of a system's wave function, is deterministic. However, the relationship between a system's wave function and the observable properties of the system appears to be non-deterministic. In mathematics The systems studied in chaos theory are deterministic. If the initial state were known exactly, then the future state of such a system could theoretically be predicted. However, in practice, knowledge about the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Left Continuous
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Martingale (probability Theory)
In probability theory, a martingale is a stochastic process in which the expected value of the next observation, given all prior observations, is equal to the most recent value. In other words, the conditional expectation of the next value, given the past, is equal to the present value. Martingales are used to model fair games, where future expected winnings are equal to the current amount regardless of past outcomes. History Originally, ''martingale (betting system), martingale'' referred to a class of betting strategy, betting strategies that was popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins their stake if a coin comes up heads and loses it if the coin comes up tails. The strategy had the gambler double their bet after every loss so that the first win would recover all previous losses plus win a profit equal to the original stake. As the gambler's wealth and available time jointly approach infinity, their pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]