Polymatroid
In mathematics, a polymatroid is a polytope associated with a submodular function. The notion was introduced by Jack Edmonds in 1970. It is also a generalization of the notion of a matroid. Definition Polyhedral definition Let E be a finite set and f: 2^E\rightarrow \mathbb_ a non-decreasing submodular function, that is, for each A\subseteq B \subseteq E we have f(A)\leq f(B) , and for each A, B \subseteq E we have f(A)+f(B) \geq f(A\cup B) + f(A\cap B) . We define the polymatroid associated to f to be the following polytope: P_f= \Big\. When we allow the entries of \textbf to be negative we denote this polytope by EP_f, and call it the extended polymatroid associated to f. Matroidal definition In matroid theory, polymatroids are defined as the pair consisting of the set and the function as in the above definition. That is, a polymatroid is a pair (E, f) where E is a finite set and f:2^E\rightarrow \mathbb_, or \mathbb_, is a non-decreasing submodular function. If the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Submodular Function
In mathematics, a submodular set function (also known as a submodular function) is a set function that, informally, describes the relationship between a set of inputs and an output, where adding more of one input has a decreasing additional benefit ( diminishing returns). The natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks. Recently, submodular functions have also found utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains. Definition If \Omega is a finite set, a submodular function is a set function f:2^\rightarrow \mathbb, where 2^\Omega denotes the power set of \Omega, which satisfies one of the following equivalent conditi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jack Edmonds
Jack R. Edmonds (born April 5, 1934) is an American-born and educated computer scientist and mathematician who lived and worked in Canada for much of his life. He has made fundamental contributions to the fields of combinatorial optimization, polyhedral combinatorics, discrete mathematics and the theory of computing. He was the recipient of the 1985 John von Neumann Theory Prize. Early career Edmonds attended McKinley Technology High School, graduating in 1952; and has talked about the influence this school had on his career (for instance at his 2014 NIST Gallery induction ). Edmonds attended Duke University before completing his undergraduate degree at George Washington University in 1957. He thereafter received a master's degree in 1960 at the University of Maryland under Bruce L. Reinhart with a thesis on the problem of embedding graphs into surfaces. From 1959 to 1969 he worked at the National Institute of Standards and Technology (then the National Bureau of Standards), a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Submodular Set Function
In mathematics, a submodular set function (also known as a submodular function) is a set function that, informally, describes the relationship between a set of inputs and an output, where adding more of one input has a decreasing additional benefit ( diminishing returns). The natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks. Recently, submodular functions have also found utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains. Definition If \Omega is a finite set, a submodular function is a set function f:2^\rightarrow \mathbb, where 2^\Omega denotes the power set of \Omega, which satisfies one of the following equivalent condit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -dimensional polytope or -polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a -polytope consist of -polytopes that may have -polytopes in common. Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes. Polytopes of more than three dimensions were first discovered by Ludwig Schläfli before 1853, who called such a figure a polyschem. The German term ''Polytop'' was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partially Ordered Set
In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is Reflexive relation, reflexive, antisymmetric relation, antisymmetric, and Transitive relation, transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact (mathematics)
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lattice Points
In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a subgroup of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a Delone set. More abstractly, a lattice can be described as a free abelian group of dimension n which spans the vector space \mathbb^n. For any basis of \mathbb^n, the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monomial Ideal
In abstract algebra, a monomial ideal is an ideal generated by monomials in a multivariate polynomial ring over a field. Definitions and properties Let \mathbb be a field and R = \mathbb /math> be the polynomial ring over \mathbb with ''n'' indeterminates x = x_1, x_2, \dotsc, x_n. A monomial in R is a product x^ = x_1^ x_2^ \cdots x_n^ for an ''n''-tuple \alpha = (\alpha_1, \alpha_2, \dotsc, \alpha_n) \in \mathbb^n of nonnegative integers. The following three conditions are equivalent for an ideal I \subseteq R: # I is generated by monomials, # If f = \sum_ c_ x^ \in I, then x^ \in I, provided that c_ is nonzero. # I is torus fixed, i.e, given (c_1, c_2, \dotsc, c_n) \in (\mathbb^*)^n, then I is fixed under the action f(x_i) = c_i x_i for all i. We say that I \subseteq \mathbb /math> is a monomial ideal if it satisfies any of these equivalent conditions. Given a monomial ideal I = (m_1, m_2, \dotsc, m_k), f \in \mathbb _1, x_2, \dotsc, x_n/math> is in I if and only if every ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutohedron
In mathematics, the permutohedron (also spelled permutahedron) of order is an -dimensional polytope embedded in an -dimensional space. Its vertex (geometry), vertex coordinates (labels) are the permutations of the first natural numbers. The edges identify the shortest possible paths (sets of Transposition (mathematics), transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one Transposition (mathematics), transposition), and the numbers on these places are neighbors (differ in value by 1). The image on the right shows the permutohedron of order 4, which is the truncated octahedron. Its vertices are the 24 permutations of . Parallel edges have the same edge color. The 6 edge colors correspond to the 6 possible Transposition (mathematics), transpositions of 4 elements, i.e. they indicate in which two places the connected permutations differ. (E.g. red edges connect permutations that differ in the last two places. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supermodular
In mathematics, a supermodular function is a function on a lattice that, informally, has the property of being characterized by "increasing differences." Seen from the point of set functions, this can also be viewed as a relationship of "increasing returns", where adding more elements to a subset increases its valuation. In economics, supermodular functions are often used as a formal expression of complementarity in preferences among goods. Supermodular functions are studied and have applications in game theory, economics, lattice theory, combinatorial optimization, and machine learning. Definition Let (X, \preceq) be a lattice. A real-valued function f: X \rightarrow \mathbb is called supermodular if f(x \vee y) + f(x \wedge y) \geq f(x) + f(y) for all x, y \in X. If the inequality is strict, then f is strictly supermodular on X. If -f is (strictly) supermodular then ''f'' is called (strictly) submodular. A function that is both submodular and supermodular is called modula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |