HOME





P-variation
In mathematical analysis, ''p''-variation is a collection of seminorms on functions from an ordered set to a metric space, indexed by a real number p\geq 1. ''p''-variation is a measure of the regularity or smoothness of a function. Specifically, if f:I\to(M,d), where (M,d) is a metric space and ''I'' a totally ordered set, its ''p''-variation is: \, f \, _ = \left(\sup_D\sum_d(f(t_k),f(t_))^p\right)^ where ''D'' ranges over all finite partitions of the interval ''I''. The ''p'' variation of a function decreases with ''p''. If ''f'' has finite ''p''-variation and ''g'' is an ''α''-Hölder continuous function, then g\circ f has finite \frac-variation. The case when ''p'' is one is called total variation, and functions with a finite 1-variation are called bounded variation functions. This concept should not be confused with the notion of p-th variation along a sequence of partitions, which is computed as a limit along a given sequence (D_n) of time partitions: f = \left(\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Variation
In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process. Definition Suppose that X_t is a real-valued stochastic process defined on a probability space (\Omega,\mathcal,\mathbb) and with time index t ranging over the non-negative real numbers. Its quadratic variation is the process, written as t, defined as : t=\lim_\sum_^n(X_-X_)^2 where P ranges over partitions of the interval ,t/math> and the norm of the partition P is the mesh. This limit, if it exists, is defined using convergence in probability. Note that a process may be of finite quadratic variation in the sense of the definition given here and its paths be nonetheless almost surely of infinite 1-variation for every t>0 in the classical sense of taking the supremum of the sum over all partitions; this is in particular the case for Brownian motion. More generally, the covariation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Variation
In mathematics, the total variation identifies several slightly different concepts, related to the (local property, local or global) structure of the codomain of a Function (mathematics), function or a measure (mathematics), measure. For a real number, real-valued continuous function ''f'', defined on an interval (mathematics), interval [''a'', ''b''] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation ''x'' ↦ ''f''(''x''), for ''x'' ∈ [''a'', ''b'']. Functions whose total variation is finite are called ''Bounded variation, functions of bounded variation''. Historical note The concept of total variation for functions of one real variable was first introduced by Camille Jordan in the paper . He used the new concept in order to prove a convergence theorem for Fourier series of discontinuous function, discontinuous periodic functions whose variation is Bounded variation, bounded. The extensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Variation
In mathematical analysis, a function of bounded variation, also known as ' function, is a real number, real-valued function (mathematics), function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single Variable (mathematics), variable, being of bounded variation means that the distance along the Direction (geometry, geography), direction of the y-axis, -axis, neglecting the contribution of motion along x-axis, -axis, traveled by a point (mathematics), point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function (which is a Glossary of differential geometry and topology#H, hypersurface in this case), but can be every Intersection (set theory), intersection of the graph itself with a hyperplan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norm (mathematics)
In mathematics, a norm is a function (mathematics), function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the Origin (mathematics), origin: it Equivariant map, commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the #Euclidean norm, Euclidean norm, the #p-norm, 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meaning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a Conceptual metaphor , metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different bra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition Of An Interval
In mathematics, a partition of an interval on the real line is a finite sequence of real numbers such that :. In other terms, a partition of a compact interval is a strictly increasing sequence of numbers (belonging to the interval itself) starting from the initial point of and arriving at the final point of . Every interval of the form is referred to as a subinterval of the partition ''x''. Refinement of a partition Another partition of the given interval , bis defined as a refinement of the partition , if contains all the points of and possibly some other points as well; the partition is said to be “finer” than . Given two partitions, and , one can always form their common refinement, denoted , which consists of all the points of and , in increasing order. Norm of a partition The norm (or mesh) of the partition : is the length of the longest of these subintervals : . Applications Partitions are used in the theory of the Riemann integral, the Riemann� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hölder Continuous
Hölder: * ''Hölder, Hoelder'' as surname * Hölder condition * Hölder's inequality In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality (mathematics), inequality between Lebesgue integration, integrals and an indispensable tool for the study of Lp space, spaces. The numbers an ... * Hölder mean * Jordan–Hölder theorem {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Stieltjes Integral
In mathematics, the Riemann–Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of this integral was first published in 1894 by Stieltjes. It serves as an instructive and useful precursor of the Lebesgue integral, and an invaluable tool in unifying equivalent forms of statistical theorems that apply to discrete and continuous probability. Formal definition The Riemann–Stieltjes integral of a real-valued function f of a real variable on the interval ,b/math> with respect to another real-to-real function g is denoted by :\int_^b f(x) \, \mathrmg(x). Its definition uses a sequence of partitions P of the interval ,b/math> :P=\. The integral, then, is defined to be the limit, as the mesh (the length of the longest subinterval) of the partitions approaches 0 , of the approximating sum :S(P,f,g) = \sum_^ f(c_i)\left g(x_) - g(x_) \right/math> where c_i is in the i-th subinterval _,x_/math> ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rough Path
In stochastic analysis, a rough path is a generalization of the classical notion of a smooth path. It extends calculus and differential equation theory to handle irregular signals—paths that are too rough for traditional analysis, such as a Wiener process. This makes it possible to define and solve controlled differential equations of the form \mathrmy_t = f(y_t),\mathrmx_t, \quad y_0 = a even when the driving path x_t lacks classical differentiability. The theory was introduced in the 1990s by Terry Lyons. Rough path theory captures how nonlinear systems interact with highly oscillatory or noisy input. It builds on the integration theory of L. C. Young, the geometric algebra of Kuo-Tsai Chen, and the Lipschitz function theory of Hassler Whitney, while remaining compatible with key ideas in stochastic calculus. The theory also extends Itô's theory of stochastic differential equations far beyond the semimartingale setting. Its definitions and uniform estimates form a ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Analysis
Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyosi Itô during World War II. The best-known stochastic process to which stochastic calculus is applied is the Wiener process (named in honor of Norbert Wiener), which is used for modeling Brownian motion as described by Louis Bachelier in 1900 and by Albert Einstein in 1905 and other physical diffusion processes in space of particles subject to random forces. Since the 1970s, the Wiener process has been widely applied in financial mathematics and economics to model the evolution in time of stock prices and bond interest rates. The main flavours of stochastic calculus are the Itô calculus and its variational relative the Malliavin calculus. For technical reasons the Itô integral is the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wiener Process
In mathematics, the Wiener process (or Brownian motion, due to its historical connection with Brownian motion, the physical process of the same name) is a real-valued continuous-time stochastic process discovered by Norbert Wiener. It is one of the best known Lévy processes (càdlàg stochastic processes with stationary increments, stationary independent increments). It occurs frequently in pure and applied mathematics, economy, economics, quantitative finance, evolutionary biology, and physics. The Wiener process plays an important role in both pure and applied mathematics. In pure mathematics, the Wiener process gave rise to the study of continuous time martingale (probability theory), martingales. It is a key process in terms of which more complicated stochastic processes can be described. As such, it plays a vital role in stochastic calculus, diffusion processes and even potential theory. It is the driving process of Schramm–Loewner evolution. In applied mathematics, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]