HOME





Ordinal Notation
In mathematical logic and set theory, an ordinal notation is a partial function mapping the set of all finite sequences of symbols, themselves members of a finite alphabet, to a countable set of ordinal number, ordinals. A Gödel numbering is a function mapping the set of well-formed formulae (a finite sequence of symbols on which the ordinal notation function is defined) of some formal language to the natural numbers. This associates each well-formed formula with a unique natural number, called its Gödel number. If a Gödel numbering is fixed, then the subset relation on the ordinals induces an ordering on well-formed formulae which in turn induces a well-ordering on the subset of natural numbers. A recursive ordinal notation must satisfy the following two additional properties: # the subset of natural numbers is a recursive set # the induced well-ordering on the subset of natural numbers is a recursive relation There are many such schemes of ordinal notations, including schemes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epsilon Numbers (mathematics)
In mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ''ε'' that satisfy the equation :\varepsilon = \omega^\varepsilon, \, in which ω is the smallest infinite ordinal. The least such ordinal is ''ε''0 (pronounced epsilon nought (chiefly British), epsilon naught (chiefly American), or epsilon zero), which can be viewed as the "limit" obtained by transfinite recursion from a sequence of smaller limit ordinals: :\varepsilon_0 = \omega^ = \sup \left\\,, where is the supremum, which is equivalent to set union in the case of the von Neumann representation of ordinals. Larger ordinal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Feferman–Schütte Ordinal
In mathematics, the Feferman–Schütte ordinal (Γ0) is a large countable ordinal. It is the proof-theoretic ordinal of several mathematical theories, such as arithmetical transfinite recursion. It is named after Solomon Feferman and Kurt Schütte, the former of whom suggested the name Γ0. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal. There are several ways of representing the Feferman–Schütte ordinal, some of which use ordinal collapsing functions: \psi(\Omega^\Omega), \theta(\Omega), \varphi_\Omega(0), or \varphi(1,0,0). Definition The Feferman–Schütte ordinal can be defined as the smallest ordinal that cannot be obtained by starting with 0 and using the operations of ordinal addition and the Veblen functions ''φ''''α''(''β''). That is, it is the smallest ''α'' such that ''φ''''α''(0) = ''α''. Properties This ordinal is sometimes said to be the first impredicative ordinal, though this is controversial, partly because there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursively Enumerable Set
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the set of input numbers for which the algorithm halts is exactly ''S''. Or, equivalently, *There is an algorithm that enumerates the members of ''S''. That means that its output is a list of all the members of ''S'': ''s''1, ''s''2, ''s''3, ... . If ''S'' is infinite, this algorithm will run forever, but each element of S will be returned after a finite amount of time. Note that these elements do not have to be listed in a particular way, say from smallest to largest. The first condition suggests why the term ''semidecidable'' is sometimes used. More precisely, if a number is in the set, one can ''decide'' this by running the algorithm, but if the number is not in the set, the algorithm can run forever, and no information is returned. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Arithmetic
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The sum of two well-ordered sets and is the ordinal representing the variant of lexicographical order with least significant position first, on the union of the Cartesian products and . This way, every element of is smaller than every element of , comparisons within keep the order they already have, and likewise for comparisons within . The definition of addition can also be given by transfinite recursion on . When the right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computable Function
Computable functions are the basic objects of study in computability theory. Informally, a function is ''computable'' if there is an algorithm that computes the value of the function for every value of its argument. Because of the lack of a precise definition of the concept of algorithm, every formal definition of computability must refer to a specific model of computation. Many such models of computation have been proposed, the major ones being Turing machines, register machines, lambda calculus and general recursive functions. Although these four are of a very different nature, they provide exactly the same class of computable functions, and, for every model of computation that has ever been proposed, the computable functions for such a model are computable for the above four models of computation. The Church–Turing thesis is the unprovable assertion that every notion of computability that can be imagined can compute only functions that are computable in the above sense. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Church–Kleene Ordinal
In mathematics, particularly set theory, non-recursive ordinals are large countable ordinals greater than all the recursive ordinals, and therefore can not be expressed using recursive ordinal notations. The Church–Kleene ordinal and variants The smallest non-recursive ordinal is the Church Kleene ordinal, \omega_1^, named after Alonzo Church and S. C. Kleene; its order type is the set of all recursive ordinals. Since the successor of a recursive ordinal is recursive, the Church–Kleene ordinal is a limit ordinal. It is also the smallest ordinal that is not hyperarithmetical, and the smallest admissible ordinal after \omega (an ordinal \alpha is called admissible if L_\alpha \models \mathsf.) The \omega_1^-recursive subsets of \omega are exactly the \Delta^1_1 subsets of \omega.D. MadoreA Zoo of Ordinals(2017). Accessed September 2021. The notation \omega_1^ is in reference to \omega_1, the first uncountable ordinal, which is the set of all countable ordinals, analogousl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First Uncountable Ordinal
In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. When considered as a set, the elements of \omega_1 are the countable ordinals (including finite ordinals), of which there are uncountably many. Like any ordinal number (in von Neumann's approach), \omega_1 is a well-ordered set, with set membership serving as the order relation. \omega_1 is a limit ordinal, i.e. there is no ordinal \alpha such that \omega_1 = \alpha+1. The cardinality of the set \omega_1 is the first uncountable cardinal number, \aleph_1 ( aleph-one). The ordinal \omega_1 is thus the initial ordinal of \aleph_1. Under the continuum hypothesis, the cardinality of \omega_1 is \beth_1, the same as that of \mathbb—the set of real numbers. In most constructions, \omega_1 and \aleph_1 are considered equal as sets. To general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Notices Of The American Mathematical Society
''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume was published in 1953. Each issue of the magazine since January 1995 is available in its entirety on the journal web site. Articles are peer-reviewed by an editorial board of mathematical experts. Beginning with the January 2025 issue, the editor-in-chief is Mark C. Wilson, succeeding past editor Erica Flapan. The cover regularly features mathematical visualizations. The ''Notices'' is self-described to be the world's most widely read mathematical journal. As the membership journal of the American Mathematical Society, the ''Notices'' is sent to the approximately 30,000 AMS members worldwide, one-third of whom reside outside the United States. By publishing high-level exposition, the ''Notices'' provides opportunities for mathematicians to find out what is going on in the field. Each is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Takeuti–Feferman–Buchholz Ordinal
In the mathematical fields of set theory and proof theory, the Takeuti–Feferman–Buchholz ordinal (TFBO) is a large countable ordinal, which acts as the limit of the range of Buchholz's psi function and Feferman's theta function. It was named by David Madore, after Gaisi Takeuti, Solomon Feferman and Wilfried Buchholz. It is written as \psi_0(\varepsilon_) using Buchholz's psi function, an ordinal collapsing function invented by Wilfried Buchholz, and \theta_(0) in Feferman's theta function, an ordinal collapsing function invented by Solomon Feferman. It is the proof-theoretic ordinal of several formal theories: * \Pi_1^1 -CA + BI, a subsystem of second-order arithmetic * \Pi_1^1-comprehension + transfinite induction * IDω, the system of ω-times iterated inductive definitions Definition * Let \Omega_\alpha represent the smallest uncountable ordinal with cardinality \aleph_\alpha. * Let \varepsilon_\beta represent the \betath epsilon number In mathematics, the epsilon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ackermann Ordinal
In mathematics, the Ackermann ordinal is a certain large countable ordinal, named after Wilhelm Ackermann. The term "Ackermann ordinal" is also occasionally used for the small Veblen ordinal, a somewhat larger ordinal. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal Γ0. Most systems of notation use symbols such as ψ(α), θ(α), ψα(β), some of which are modifications of the Veblen function In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If ''φ''0 is any normal function, then for any non-zero ordinal '' ...s to produce countable ordinals even for uncountable arguments, and some of which are " collapsing functions". The last one is an extension of the Veblen functions for more than 2 arguments. The smaller Ackermann ordinal is the limit of a system of ordinal notations invented by , and is sometimes denot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]